This repo implement the Guided Imitation Learning for LGP. This framework devise a hierarchial policy to imitate the LGP solvers. An example of the resulting policy is shown in the following figure. The figure show the trajectories from different solver: red - huamn’s trajectories, yellow - GIL-LGP, blue - Single plan LGP, green - Dynamic plan LGP.
This repo is built based on the repo of LGP from Le et al. [1]
This assumes you a;ready install the dependencies for Simon's master thesis repo and humoro
.
Clone Simon's master thesis repo:
git clone git@animal.informatik.uni-stuttgart.de:simon.hagenmayer/hierarchical-hmp.git
Then, clone humoro
and gil
to hierarchical-hmp
folder, checkout MASimon
branch on humoro
, install dependencies of gil
and install gil
:
cd hierarchical-hmp
git clone git@animal.informatik.uni-stuttgart.de:philippkratzer/humoro.git
git clone git@github.com:nkquynh98/gil.git
cd humoro
git checkout MASimon
cd ../gil
pip install -r requirements.txt
pip install -e .
Also clone bewego
into hierarchical-hmp
folder. We use the old version of Bewego as the newer version is now not compatible with the LGP:
cd hierarchical-hmp
git clone https://github.com/anindex/bewego --recursive
cd bewego
mkdir -p build && cd build
cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo -DWITH_IPOPT=True -DPYBIND11_PYTHON_VERSION=3.5
make
make install
Finally, please download MoGaze dataset and unzip it into gil/datasets/mogaze
.
mkdir -p datasets && cd datasets
wget https://ipvs.informatik.uni-stuttgart.de/mlr/philipp/mogaze/mogaze.zip
unzip mogaze.zip
And also run this script to initialize Pepper URDF:
cd gil
python examples/init_pepper.py
To generate an Expert task and motion dataset, please run:
python examples/dataset_generator.py
To train the task and motion policies, please run
python gil/policy/training/move_motion_training.py
python gil/policy/training/task_policy_training.py
To test the trained policies, please run this experiment:
python examples/experiment_with_gil.py
To read the experiment result, please run:
python examples/read_save_experiment.py
[1] A. T. Le, P. Kratzer, S. Hagenmayer, M. Toussaint, and J. Mainprice, “Hierarchical human-motion prediction and logic-geometric program- ming for minimal interference human-robot tasks,” 2021 30th IEEE International Conference on Robot and Human Interactive Communi- cation, RO-MAN 2021, pp. 7–14, 4 2021