-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #121 from nlmixr2/121-script-output-2designs
Script output for different designs
- Loading branch information
Showing
13 changed files
with
1,452 additions
and
194 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
library(babelmixr2) | ||
library(PopED) | ||
|
||
##-- Model: One comp first order absorption | ||
## -- Analytic solution for both mutiple and single dosing | ||
|
||
f <- function() { | ||
ini({ | ||
tV <- 72.8 | ||
tKa <- 0.25 | ||
tCl <- 3.75 | ||
tF <- fix(0.9) | ||
|
||
eta.v ~ 0.09 | ||
eta.ka ~ 0.09 | ||
eta.cl ~0.25^2 | ||
|
||
prop.sd <- fix(sqrt(0.04)) | ||
add.sd <- fix(sqrt(5e-6)) | ||
|
||
}) | ||
model({ | ||
V<-tV*exp(eta.v) | ||
KA<-tKa*exp(eta.ka) | ||
CL<-tCl*exp(eta.cl) | ||
Favail <- tF | ||
N <- floor(time/TAU)+1 | ||
y <- (DOSE*Favail/V)*(KA/(KA - CL/V)) * | ||
(exp(-CL/V * (time - (N - 1) * TAU)) * | ||
(1 - exp(-N * CL/V * TAU))/(1 - exp(-CL/V * TAU)) - | ||
exp(-KA * (time - (N - 1) * TAU)) * (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU))) | ||
|
||
y ~ prop(prop.sd) + add(add.sd) | ||
}) | ||
} | ||
|
||
# minxt, maxxt | ||
e <- et(list(c(0, 10), | ||
c(0, 10), | ||
c(0, 10), | ||
c(240, 248), | ||
c(240, 248))) %>% | ||
as.data.frame() | ||
|
||
#xt | ||
e$time <- c(1,2,8,240,245) | ||
|
||
|
||
babel.db <- nlmixr2(f, e, "poped", | ||
popedControl(groupsize=20, | ||
bUseGrouped_xt=TRUE, | ||
a=list(c(DOSE=20,TAU=24), | ||
c(DOSE=40, TAU=24)), | ||
maxa=c(DOSE=200,TAU=24), | ||
mina=c(DOSE=0,TAU=24))) | ||
|
||
## create plot of model without variability | ||
plot_model_prediction(babel.db, model_num_points = 300) | ||
|
||
## create plot of model with variability | ||
plot_model_prediction(babel.db, IPRED=T, DV=T, separate.groups=T, model_num_points = 300) | ||
|
||
## evaluate initial design | ||
evaluate_design(babel.db) | ||
|
||
shrinkage(babel.db) | ||
|
||
# Optimization of sample times | ||
output <- poped_optim(babel.db, opt_xt =TRUE) | ||
|
||
# Evaluate optimization results | ||
summary(output) | ||
|
||
get_rse(output$FIM,output$poped.db) | ||
|
||
plot_model_prediction(output$poped.db) | ||
|
||
|
||
# Optimization of sample times and doses | ||
output_2 <- poped_optim(output$poped.db, opt_xt =TRUE, opt_a = TRUE) | ||
|
||
summary(output_2) | ||
|
||
get_rse(output_2$FIM,output_2$poped.db) | ||
|
||
plot_model_prediction(output_2$poped.db) | ||
|
||
|
||
# Optimization of sample times with only integer time points in design space | ||
# faster than continuous optimization in this case | ||
babel.db.discrete <- create.poped.database(babel.db,discrete_xt = list(0:248)) | ||
|
||
output_discrete <- poped_optim(babel.db.discrete, opt_xt=T) | ||
|
||
|
||
summary(output_discrete) | ||
|
||
get_rse(output_discrete$FIM,output_discrete$poped.db) | ||
|
||
plot_model_prediction(output_discrete$poped.db) | ||
|
||
|
||
# Efficiency of sampling windows | ||
plot_efficiency_of_windows(output_discrete$poped.db, xt_windows=1) |
99 changes: 99 additions & 0 deletions
99
inst/poped/ex.1.b.PK.1.comp.oral.md.re-parameterize.babelmixr2.R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
## using libary models and reparameterizing the problen to KA, KE and V | ||
## optimization of dose and dose interval | ||
|
||
library(babelmixr2) | ||
|
||
library(PopED) | ||
|
||
f <- function() { | ||
ini({ | ||
tV <- 72.8 | ||
tKa <- 0.25 | ||
tKe <- 3.75/72.8 | ||
tFavail <- fix(0.9) | ||
|
||
eta.v ~ 0.09 | ||
eta.ka ~ 0.09 | ||
eta.ke ~ 0.25^2 | ||
|
||
prop.sd <- fix(sqrt(0.04)) | ||
add.sd <- fix(sqrt(5e-6)) | ||
}) | ||
model({ | ||
V <- tV*exp(eta.v) | ||
KA <- tKa*exp(eta.ka) | ||
KE <- tKe*exp(eta.ke) | ||
Favail <- tFavail | ||
N <- floor(time/TAU)+1 | ||
y <- (DOSE*Favail/V)*(KA/(KA - KE)) * | ||
(exp(-KE * (time - (N - 1) * TAU)) * (1 - exp(-N * KE * TAU))/(1 - exp(-KE * TAU)) - | ||
exp(-KA * (time - (N - 1) * TAU)) * (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU))) | ||
|
||
y ~ prop(prop.sd) + add(add.sd) | ||
}) | ||
} | ||
|
||
# minxt, maxxt | ||
e <- et(list(c(0, 10), | ||
c(0, 10), | ||
c(0, 10), | ||
c(240, 248), | ||
c(240, 248))) %>% | ||
as.data.frame() | ||
|
||
#xt | ||
e$time <- c(1,2,8,240,245) | ||
|
||
|
||
babel.db <- nlmixr2(f, e, "poped", | ||
popedControl(groupsize=20, | ||
bUseGrouped_xt=TRUE, | ||
a=list(c(DOSE=20,TAU=24), | ||
c(DOSE=40, TAU=24)), | ||
maxa=c(DOSE=200,TAU=24), | ||
mina=c(DOSE=0,TAU=24))) | ||
|
||
|
||
## create plot of model without variability | ||
plot_model_prediction(babel.db) | ||
|
||
## create plot of model with variability | ||
plot_model_prediction(babel.db,IPRED=T,DV=T,separate.groups=T) | ||
|
||
## evaluate initial design | ||
evaluate_design(babel.db) | ||
|
||
shrinkage(babel.db) | ||
|
||
# Optimization of sample times | ||
output <- poped_optim(babel.db, opt_xt =TRUE) | ||
|
||
# Evaluate optimization results | ||
summary(output) | ||
|
||
get_rse(output$FIM,output$poped.db) | ||
|
||
plot_model_prediction(output$poped.db) | ||
|
||
# Optimization of sample times, doses and dose intervals | ||
output_2 <- poped_optim(output$poped.db, opt_xt =TRUE, opt_a = TRUE) | ||
|
||
summary(output_2) | ||
get_rse(output_2$FIM,output_2$poped.db) | ||
plot_model_prediction(output_2$poped.db) | ||
|
||
# Optimization of sample times with only integer time points in design space | ||
# faster than continuous optimization in this case | ||
babel.db.discrete <- create.poped.database(babel.db,discrete_xt = list(0:248)) | ||
|
||
output_discrete <- poped_optim(babel.db.discrete, opt_xt=T) | ||
|
||
summary(output_discrete) | ||
|
||
get_rse(output_discrete$FIM,output_discrete$poped.db) | ||
|
||
plot_model_prediction(output_discrete$poped.db) | ||
|
||
|
||
# Efficiency of sampling windows | ||
plot_efficiency_of_windows(output_discrete$poped.db, xt_windows=1) |
102 changes: 102 additions & 0 deletions
102
inst/poped/ex.1.c.PK.1.comp.oral.md.ODE.compiled.babelmixr2.R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
library(babelmixr2) | ||
library(PopED) | ||
|
||
|
||
## define the ODE | ||
f <- function() { | ||
ini({ | ||
tV <- 72.8 | ||
tKa <- 0.25 | ||
tCl <- 3.75 | ||
tF <- fix(0.9) | ||
|
||
eta.v ~ 0.09 | ||
eta.ka ~ 0.09 | ||
eta.cl ~0.25^2 | ||
|
||
prop.sd <- fix(sqrt(0.04)) | ||
add.sd <- fix(sqrt(5e-6)) | ||
|
||
}) | ||
model({ | ||
V<-tV*exp(eta.v) | ||
KA<-tKa*exp(eta.ka) | ||
CL<-tCl*exp(eta.cl) | ||
Favail <- tF | ||
d/dt(depot) <- -KA*depot | ||
d/dt(central) <- KA*depot - (CL/V)*central | ||
f(depot) <- Favail*DOSE | ||
y <- central/V | ||
y ~ prop(prop.sd) + add(add.sd) | ||
}) | ||
} | ||
|
||
# minxt, maxxt | ||
e <- et(list(c(0, 10), | ||
c(0, 10), | ||
c(0, 10), | ||
c(240, 248), | ||
c(240, 248))) %>% | ||
et(amt=1000, ii=24, until=248,cmt="depot") %>% | ||
as.data.frame() | ||
|
||
#xt | ||
e$time <- c(0, 1,2,8,240,245) | ||
|
||
|
||
babel.db <- nlmixr2(f, e, "poped", | ||
popedControl(groupsize=20, | ||
bUseGrouped_xt=TRUE, | ||
a=list(c(DOSE=20,TAU=24), | ||
c(DOSE=40, TAU=24)), | ||
maxa=c(DOSE=200,TAU=24), | ||
mina=c(DOSE=0,TAU=24))) | ||
|
||
## create plot of model without variability | ||
plot_model_prediction(babel.db, model_num_points = 300) | ||
|
||
## create plot of model with variability | ||
plot_model_prediction(babel.db, IPRED=T, DV=T, separate.groups=T, model_num_points = 300) | ||
|
||
## evaluate initial design | ||
evaluate_design(babel.db) | ||
|
||
shrinkage(babel.db) | ||
|
||
# Optimization of sample times | ||
output <- poped_optim(babel.db, opt_xt =TRUE) | ||
|
||
# Evaluate optimization results | ||
summary(output) | ||
|
||
get_rse(output$FIM,output$poped.db) | ||
|
||
plot_model_prediction(output$poped.db) | ||
|
||
|
||
# Optimization of sample times and doses | ||
output_2 <- poped_optim(output$poped.db, opt_xt =TRUE, opt_a = TRUE) | ||
|
||
summary(output_2) | ||
|
||
get_rse(output_2$FIM,output_2$poped.db) | ||
|
||
plot_model_prediction(output_2$poped.db) | ||
|
||
|
||
# Optimization of sample times with only integer time points in design space | ||
# faster than continuous optimization in this case | ||
babel.db.discrete <- create.poped.database(babel.db,discrete_xt = list(0:248)) | ||
|
||
output_discrete <- poped_optim(babel.db.discrete, opt_xt=T) | ||
|
||
|
||
summary(output_discrete) | ||
|
||
get_rse(output_discrete$FIM,output_discrete$poped.db) | ||
|
||
plot_model_prediction(output_discrete$poped.db) | ||
|
||
|
||
# Efficiency of sampling windows | ||
plot_efficiency_of_windows(output_discrete$poped.db, xt_windows=1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
## Warfarin example from software comparison in: | ||
## Nyberg et al., "Methods and software tools for design evaluation | ||
## for population pharmacokinetics-pharmacodynamics studies", | ||
## Br. J. Clin. Pharm., 2014. | ||
|
||
library(babelmixr2) | ||
library(PopED) | ||
|
||
##-- Model: One comp first order absorption | ||
|
||
f <- function() { | ||
ini({ | ||
tCl <- 0.15 | ||
tV <- 8 | ||
tKA <- 1.0 | ||
tFavail <- fix(1) | ||
eta.cl ~ 0.07 | ||
eta.v ~ 0.02 | ||
eta.ka ~ 0.6 | ||
|
||
prop.sd <- sqrt(0.01) | ||
}) | ||
model({ | ||
CL <- tCl*exp(eta.cl) | ||
V <- tV*exp(eta.v) | ||
KA <- tKA*exp(eta.ka) | ||
Favail <- tFavail | ||
y <- (DOSE*Favail*KA/(V*(KA-CL/V)))*(exp(-CL/V*time)-exp(-KA*time)) | ||
y ~ prop(prop.sd) | ||
|
||
}) | ||
} | ||
|
||
e <- et(c(0.5, 1,2,6,24,36,72,120)) %>% | ||
as.data.frame() | ||
|
||
## -- Define initial design and design space | ||
babel.db <- nlmixr2(f, e, "poped", | ||
control=popedControl( | ||
groupsize=32, | ||
minxt=0, | ||
maxxt=120, | ||
a=70)) | ||
|
||
## create plot of model without variability | ||
plot_model_prediction(babel.db) | ||
|
||
## create plot of model with variability | ||
plot_model_prediction(babel.db,IPRED=T,DV=T) | ||
|
||
######################################### | ||
## NOTE All PopED output for residuals | ||
## (add or prop) are VARIANCES instead of | ||
## standard deviations! | ||
######################################### | ||
|
||
## get predictions from model | ||
model_prediction(babel.db) | ||
|
||
## evaluate initial design | ||
evaluate_design(babel.db) | ||
shrinkage(babel.db) | ||
|
||
## Evaluate with full FIM | ||
evaluate_design(babel.db, fim.calc.type=0) | ||
|
||
# Examine efficiency of sampling windows | ||
plot_efficiency_of_windows(babel.db,xt_windows=0.5) |
Oops, something went wrong.