Skip to content

Commit

Permalink
DEPR: SparseArray.astype (pandas-dev#49324)
Browse files Browse the repository at this point in the history
* DEPR: SparseArray.astype

* fix append test

* remove no-longer-overriden tests
  • Loading branch information
jbrockmendel authored and noatamir committed Nov 9, 2022
1 parent 93ec560 commit b43ca7c
Show file tree
Hide file tree
Showing 8 changed files with 27 additions and 90 deletions.
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -285,6 +285,7 @@ Removal of prior version deprecations/changes
- Removed the deprecated method ``tshift`` from pandas classes (:issue:`11631`)
- Changed behavior of empty data passed into :class:`Series`; the default dtype will be ``object`` instead of ``float64`` (:issue:`29405`)
- Changed the behavior of :func:`to_datetime` with argument "now" with ``utc=False`` to match ``Timestamp("now")`` (:issue:`18705`)
- Changed behavior of :meth:`SparseArray.astype` when given a dtype that is not explicitly ``SparseDtype``, cast to the exact requested dtype rather than silently using a ``SparseDtype`` instead (:issue:`34457`)
- Changed behavior of :class:`DataFrame` constructor given floating-point ``data`` and an integer ``dtype``, when the data cannot be cast losslessly, the floating point dtype is retained, matching :class:`Series` behavior (:issue:`41170`)
- Changed behavior of :class:`DataFrame` constructor when passed a ``dtype`` (other than int) that the data cannot be cast to; it now raises instead of silently ignoring the dtype (:issue:`41733`)
- Changed the behavior of :class:`Series` constructor, it will no longer infer a datetime64 or timedelta64 dtype from string entries (:issue:`41731`)
Expand Down
17 changes: 9 additions & 8 deletions pandas/core/arrays/sparse/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,6 +120,8 @@ class ellipsis(Enum):

SparseIndexKind = Literal["integer", "block"]

from pandas.core.dtypes.dtypes import ExtensionDtype

from pandas import Series

else:
Expand Down Expand Up @@ -1328,14 +1330,13 @@ def astype(self, dtype: AstypeArg | None = None, copy: bool = True):
future_dtype = pandas_dtype(dtype)
if not isinstance(future_dtype, SparseDtype):
# GH#34457
warnings.warn(
"The behavior of .astype from SparseDtype to a non-sparse dtype "
"is deprecated. In a future version, this will return a non-sparse "
"array with the requested dtype. To retain the old behavior, use "
"`obj.astype(SparseDtype(dtype))`",
FutureWarning,
stacklevel=find_stack_level(),
)
if isinstance(future_dtype, np.dtype):
values = np.array(self)
return astype_nansafe(values, dtype=future_dtype)
else:
dtype = cast(ExtensionDtype, dtype)
cls = dtype.construct_array_type()
return cls._from_sequence(self, dtype=dtype, copy=copy)

dtype = self.dtype.update_dtype(dtype)
subtype = pandas_dtype(dtype._subtype_with_str)
Expand Down
30 changes: 7 additions & 23 deletions pandas/tests/arrays/sparse/test_astype.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,12 +39,9 @@ def test_astype(self):

def test_astype_bool(self):
a = SparseArray([1, 0, 0, 1], dtype=SparseDtype(int, 0))
with tm.assert_produces_warning(FutureWarning, match="astype from Sparse"):
result = a.astype(bool)
expected = SparseArray(
[True, False, False, True], dtype=SparseDtype(bool, False)
)
tm.assert_sp_array_equal(result, expected)
result = a.astype(bool)
expected = np.array([1, 0, 0, 1], dtype=bool)
tm.assert_numpy_array_equal(result, expected)

# update fill value
result = a.astype(SparseDtype(bool, False))
Expand All @@ -57,12 +54,8 @@ def test_astype_all(self, any_real_numpy_dtype):
vals = np.array([1, 2, 3])
arr = SparseArray(vals, fill_value=1)
typ = np.dtype(any_real_numpy_dtype)
with tm.assert_produces_warning(FutureWarning, match="astype from Sparse"):
res = arr.astype(typ)
assert res.dtype == SparseDtype(typ, 1)
assert res.sp_values.dtype == typ

tm.assert_numpy_array_equal(np.asarray(res.to_dense()), vals.astype(typ))
res = arr.astype(typ)
tm.assert_numpy_array_equal(res, vals.astype(any_real_numpy_dtype))

@pytest.mark.parametrize(
"arr, dtype, expected",
Expand Down Expand Up @@ -100,22 +93,13 @@ def test_astype_all(self, any_real_numpy_dtype):
],
)
def test_astype_more(self, arr, dtype, expected):

if isinstance(dtype, SparseDtype):
warn = None
else:
warn = FutureWarning

with tm.assert_produces_warning(warn, match="astype from SparseDtype"):
result = arr.astype(dtype)
result = arr.astype(arr.dtype.update_dtype(dtype))
tm.assert_sp_array_equal(result, expected)

def test_astype_nan_raises(self):
arr = SparseArray([1.0, np.nan])
with pytest.raises(ValueError, match="Cannot convert non-finite"):
msg = "astype from SparseDtype"
with tm.assert_produces_warning(FutureWarning, match=msg):
arr.astype(int)
arr.astype(int)

def test_astype_copy_false(self):
# GH#34456 bug caused by using .view instead of .astype in astype_nansafe
Expand Down
17 changes: 3 additions & 14 deletions pandas/tests/extension/base/reshaping.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@
import pytest

import pandas as pd
import pandas._testing as tm
from pandas.api.extensions import ExtensionArray
from pandas.core.internals.blocks import EABackedBlock
from pandas.tests.extension.base.base import BaseExtensionTests
Expand Down Expand Up @@ -319,23 +318,13 @@ def test_unstack(self, data, index, obj):
alt = df.unstack(level=level).droplevel(0, axis=1)
self.assert_frame_equal(result, alt)

if obj == "series":
is_sparse = isinstance(ser.dtype, pd.SparseDtype)
else:
is_sparse = isinstance(ser.dtypes.iat[0], pd.SparseDtype)
warn = None if not is_sparse else FutureWarning
with tm.assert_produces_warning(warn, match="astype from Sparse"):
obj_ser = ser.astype(object)
obj_ser = ser.astype(object)

expected = obj_ser.unstack(level=level, fill_value=data.dtype.na_value)
if obj == "series" and not is_sparse:
# GH#34457 SparseArray.astype(object) gives Sparse[object]
# instead of np.dtype(object)
if obj == "series":
assert (expected.dtypes == object).all()

with tm.assert_produces_warning(warn, match="astype from Sparse"):
result = result.astype(object)

result = result.astype(object)
self.assert_frame_equal(result, expected)

def test_ravel(self, data):
Expand Down
37 changes: 5 additions & 32 deletions pandas/tests/extension/test_sparse.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,6 @@

from pandas.errors import PerformanceWarning

from pandas.core.dtypes.common import is_object_dtype

import pandas as pd
from pandas import SparseDtype
import pandas._testing as tm
Expand Down Expand Up @@ -159,10 +157,7 @@ def test_concat_mixed_dtypes(self, data):
],
)
def test_stack(self, data, columns):
with tm.assert_produces_warning(
FutureWarning, check_stacklevel=False, match="astype from Sparse"
):
super().test_stack(data, columns)
super().test_stack(data, columns)

def test_concat_columns(self, data, na_value):
self._check_unsupported(data)
Expand Down Expand Up @@ -385,33 +380,11 @@ def test_equals(self, data, na_value, as_series, box):


class TestCasting(BaseSparseTests, base.BaseCastingTests):
def test_astype_object_series(self, all_data):
# Unlike the base class, we do not expect the resulting Block
# to be ObjectBlock / resulting array to be np.dtype("object")
ser = pd.Series(all_data, name="A")
with tm.assert_produces_warning(FutureWarning, match="astype from Sparse"):
result = ser.astype(object)
assert is_object_dtype(result.dtype)
assert is_object_dtype(result._mgr.array.dtype)

def test_astype_object_frame(self, all_data):
# Unlike the base class, we do not expect the resulting Block
# to be ObjectBlock / resulting array to be np.dtype("object")
df = pd.DataFrame({"A": all_data})

with tm.assert_produces_warning(FutureWarning, match="astype from Sparse"):
result = df.astype(object)
assert is_object_dtype(result._mgr.arrays[0].dtype)

# check that we can compare the dtypes
comp = result.dtypes == df.dtypes
assert not comp.any()

def test_astype_str(self, data):
with tm.assert_produces_warning(FutureWarning, match="astype from Sparse"):
result = pd.Series(data[:5]).astype(str)
expected_dtype = SparseDtype(str, str(data.fill_value))
expected = pd.Series([str(x) for x in data[:5]], dtype=expected_dtype)
# pre-2.0 this would give a SparseDtype even if the user asked
# for a non-sparse dtype.
result = pd.Series(data[:5]).astype(str)
expected = pd.Series([str(x) for x in data[:5]], dtype=object)
self.assert_series_equal(result, expected)

@pytest.mark.xfail(raises=TypeError, reason="no sparse StringDtype")
Expand Down
7 changes: 1 addition & 6 deletions pandas/tests/frame/methods/test_append.py
Original file line number Diff line number Diff line change
Expand Up @@ -241,12 +241,7 @@ def test_append_timestamps_aware_or_naive(self, tz_naive_fixture, timestamp):
def test_other_dtypes(self, data, dtype, using_array_manager):
df = DataFrame(data, dtype=dtype)

warn = None
if using_array_manager and isinstance(dtype, pd.SparseDtype):
warn = FutureWarning

with tm.assert_produces_warning(warn, match="astype from SparseDtype"):
result = df._append(df.iloc[0]).iloc[-1]
result = df._append(df.iloc[0]).iloc[-1]

expected = Series(data, name=0, dtype=dtype)
tm.assert_series_equal(result, expected)
Expand Down
4 changes: 0 additions & 4 deletions pandas/tests/indexing/test_loc.py
Original file line number Diff line number Diff line change
Expand Up @@ -1300,10 +1300,6 @@ def test_loc_getitem_time_object(self, frame_or_series):
@pytest.mark.parametrize("spmatrix_t", ["coo_matrix", "csc_matrix", "csr_matrix"])
@pytest.mark.parametrize("dtype", [np.int64, np.float64, complex])
@td.skip_if_no_scipy
@pytest.mark.filterwarnings(
# TODO(2.0): remove filtering; note only needed for using_array_manager
"ignore:The behavior of .astype from SparseDtype.*FutureWarning"
)
def test_loc_getitem_range_from_spmatrix(self, spmatrix_t, dtype):
import scipy.sparse

Expand Down
4 changes: 1 addition & 3 deletions pandas/tests/series/test_ufunc.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,9 +85,7 @@ def test_binary_ufunc_with_index(flip, sparse, ufunc, arrays_for_binary_ufunc):
name = "name" # op(pd.Series, array) preserves the name.
series = pd.Series(a1, name=name)

warn = None if not sparse else FutureWarning
with tm.assert_produces_warning(warn):
other = pd.Index(a2, name=name).astype("int64")
other = pd.Index(a2, name=name).astype("int64")

array_args = (a1, a2)
series_args = (series, other) # ufunc(series, array)
Expand Down

0 comments on commit b43ca7c

Please sign in to comment.