-
Notifications
You must be signed in to change notification settings - Fork 30.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
124 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
#!/usr/bin/env Rscript | ||
library(ggplot2); | ||
library(plyr); | ||
|
||
# get __dirname and load ./_cli.R | ||
args = commandArgs(trailingOnly = F); | ||
dirname = dirname(sub("--file=", "", args[grep("--file", args)])); | ||
source(paste0(dirname, '/_cli.R'), chdir=T); | ||
|
||
if (!is.null(args.options$help) || | ||
(!is.null(args.options$plot) && args.options$plot == TRUE)) { | ||
stop("usage: cat file.csv | Rscript bar.R | ||
--help show this message | ||
--plot filename save plot to filename"); | ||
} | ||
|
||
plot.filename = args.options$plot; | ||
|
||
dat = read.csv( | ||
file('stdin'), | ||
colClasses=c('character', 'character', 'character', 'numeric', 'numeric') | ||
); | ||
dat = data.frame(dat); | ||
|
||
dat$nameTwoLines = paste0(dat$filename, '\n', dat$configuration); | ||
dat$name = paste0(dat$filename, ' ', dat$configuration); | ||
|
||
# Create a box plot | ||
if (!is.null(plot.filename)) { | ||
p = ggplot(data=dat, aes(x=nameTwoLines, y=rate, fill=binary)); | ||
p = p + geom_bar(stat="summary", position=position_dodge()); | ||
p = p + ylab("rate of operations (higher is better)"); | ||
p = p + xlab("benchmark"); | ||
p = p + theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)); | ||
ggsave(plot.filename, p); | ||
} | ||
|
||
# Computes the shared standard error, as used in Welch's t-test. | ||
welch.sd = function (old.rate, new.rate) { | ||
old.se.squared = var(old.rate) / length(old.rate) | ||
new.se.squared = var(new.rate) / length(new.rate) | ||
return(sqrt(old.se.squared + new.se.squared)) | ||
} | ||
|
||
# Calculate the improvement confidence interval. The improvement is calculated | ||
# by dividing by old.mu and not new.mu, because old.mu is what the mean | ||
# improvement is calculated relative to. | ||
confidence.interval = function (shared.se, old.mu, w, risk) { | ||
interval = qt(1 - (risk / 2), w$parameter) * shared.se; | ||
return(sprintf("±%.2f%%", (interval / old.mu) * 100)) | ||
} | ||
|
||
# Calculate the statistics table. | ||
statistics = ddply(dat, "name", function(subdat) { | ||
old.rate = subset(subdat, binary == "old")$rate; | ||
new.rate = subset(subdat, binary == "new")$rate; | ||
|
||
# Calculate improvement for the "new" binary compared with the "old" binary | ||
old.mu = mean(old.rate); | ||
new.mu = mean(new.rate); | ||
improvement = sprintf("%.2f %%", ((new.mu - old.mu) / old.mu * 100)); | ||
|
||
r = list( | ||
confidence = "NA", | ||
improvement = improvement, | ||
"accuracy (*)" = "NA", | ||
"(**)" = "NA", | ||
"(***)" = "NA" | ||
); | ||
|
||
# Check if there is enough data to calculate the p-value. | ||
if (length(old.rate) > 1 && length(new.rate) > 1) { | ||
# Perform a statistical test to see if there actually is a difference in | ||
# performance. | ||
w = t.test(rate ~ binary, data=subdat); | ||
shared.se = welch.sd(old.rate, new.rate) | ||
|
||
# Add user-friendly stars to the table. There should be at least one star | ||
# before you can say that there is an improvement. | ||
confidence = ''; | ||
if (w$p.value < 0.001) { | ||
confidence = '***'; | ||
} else if (w$p.value < 0.01) { | ||
confidence = '**'; | ||
} else if (w$p.value < 0.05) { | ||
confidence = '*'; | ||
} | ||
|
||
r = list( | ||
confidence = confidence, | ||
improvement = improvement, | ||
"accuracy (*)" = confidence.interval(shared.se, old.mu, w, 0.05), | ||
"(**)" = confidence.interval(shared.se, old.mu, w, 0.01), | ||
"(***)" = confidence.interval(shared.se, old.mu, w, 0.001) | ||
); | ||
} | ||
|
||
return(data.frame(r, check.names=FALSE)); | ||
}); | ||
|
||
|
||
# Set the benchmark names as the row.names to left align them in the print. | ||
row.names(statistics) = statistics$name; | ||
statistics$name = NULL; | ||
|
||
options(width = 200); | ||
print(statistics); | ||
cat("\n") | ||
cat(sprintf( | ||
"Be aware that when doing many comparisons the risk of a false-positive | ||
result increases. In this case, there are %d comparisons, you can thus | ||
expect the following amount of false-positive results: | ||
%.2f false positives, when considering a 5%% risk acceptance (*, **, ***), | ||
%.2f false positives, when considering a 1%% risk acceptance (**, ***), | ||
%.2f false positives, when considering a 0.1%% risk acceptance (***) | ||
", | ||
nrow(statistics), | ||
nrow(statistics) * 0.05, | ||
nrow(statistics) * 0.01, | ||
nrow(statistics) * 0.001)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters