Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added tests for MD method ENUMS in Gromacs #80

Merged
merged 3 commits into from
Jan 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,6 @@ cover/
*.pot

# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
gmx grompp -f water.298.mdp -c water.confout.gro -p water.top -o water.tpr

gmx mdrun -s water.tpr -o water.trr
651 changes: 651 additions & 0 deletions tests/data/gromacs/water_AA_ENUM_tests/integrator-bd/confout.gro

Large diffs are not rendered by default.

Binary file not shown.
484 changes: 484 additions & 0 deletions tests/data/gromacs/water_AA_ENUM_tests/integrator-bd/md.log

Large diffs are not rendered by default.

353 changes: 353 additions & 0 deletions tests/data/gromacs/water_AA_ENUM_tests/integrator-bd/mdout.mdp
Original file line number Diff line number Diff line change
@@ -0,0 +1,353 @@
;
; File 'mdout.mdp' was generated
; By user: jfrudzinski (1000)
; On host: FAIRmat-AreaC2-Rudzinski
; At date: Wed Jan 3 15:16:49 2024
;
; Created by:
; :-) GROMACS - gmx grompp, 2018.6 (-:
;
; Executable: /home/jfrudzinski/miniconda3/envs/martignac_2/bin/gmx
; Data prefix: /home/jfrudzinski/miniconda3/envs/martignac_2
; Working dir: /home/jfrudzinski/work/DEV_Examples/GRO_DEV/MD_Overview/Water/water_AA_integrators_1frame/bd
; Command line:
; gmx grompp -f water.298.mdp -c water.confout.gro -p water.top -o water.tpr

; VARIOUS PREPROCESSING OPTIONS
; Preprocessor information: use cpp syntax.
; e.g.: -I/home/joe/doe -I/home/mary/roe
include = -I/gpfs/work/jfr148/pkg/gromacs-4.0.7/share/top/
; e.g.: -DPOSRES -DFLEXIBLE (note these variable names are case sensitive)
define =

; RUN CONTROL PARAMETERS
integrator = bd
; Start time and timestep in ps
tinit = 0.0
dt = 0.0001
nsteps = 1
; For exact run continuation or redoing part of a run
init-step = 0
; Part index is updated automatically on checkpointing (keeps files separate)
simulation-part = 1
; mode for center of mass motion removal
comm-mode = linear
; number of steps for center of mass motion removal
nstcomm = 1
; group(s) for center of mass motion removal
comm-grps =

; LANGEVIN DYNAMICS OPTIONS
; Friction coefficient (amu/ps) and random seed
bd-fric = 0
ld-seed = -1

; ENERGY MINIMIZATION OPTIONS
; Force tolerance and initial step-size
emtol = 10
emstep = 0.01
; Max number of iterations in relax-shells
niter = 20
; Step size (ps^2) for minimization of flexible constraints
fcstep = 0
; Frequency of steepest descents steps when doing CG
nstcgsteep = 1000
nbfgscorr = 10

; TEST PARTICLE INSERTION OPTIONS
rtpi = 0.05

; OUTPUT CONTROL OPTIONS
; Output frequency for coords (x), velocities (v) and forces (f)
nstxout = 1
nstvout = 1
nstfout = 1
; Output frequency for energies to log file and energy file
nstlog = 1
nstcalcenergy = 100
nstenergy = 1
; Output frequency and precision for .xtc file
nstxout-compressed = 0
compressed-x-precision = 1000
; This selects the subset of atoms for the compressed
; trajectory file. You can select multiple groups. By
; default, all atoms will be written.
compressed-x-grps =
; Selection of energy groups
energygrps = System

; NEIGHBORSEARCHING PARAMETERS
; cut-off scheme (Verlet: particle based cut-offs, group: using charge groups)
cutoff-scheme = Verlet
; nblist update frequency
nstlist = 1
; ns algorithm (simple or grid)
ns_type = grid
; Periodic boundary conditions: xyz, no, xy
pbc = xyz
periodic-molecules = no
; Allowed energy error due to the Verlet buffer in kJ/mol/ps per atom,
; a value of -1 means: use rlist
verlet-buffer-tolerance = 0.005
; nblist cut-off
rlist = 0.9
; long-range cut-off for switched potentials

; OPTIONS FOR ELECTROSTATICS AND VDW
; Method for doing electrostatics
coulombtype = PME
coulomb-modifier = Potential-shift-Verlet
rcoulomb-switch = 0
rcoulomb = 0.9
; Relative dielectric constant for the medium and the reaction field
epsilon-r = 1
epsilon-rf = 0
; Method for doing Van der Waals
vdwtype = cutoff
vdw-modifier = Potential-shift-Verlet
; cut-off lengths
rvdw-switch = 0
rvdw = 0.9
; Apply long range dispersion corrections for Energy and Pressure
DispCorr = EnerPres
; Extension of the potential lookup tables beyond the cut-off
table-extension = 1
; Separate tables between energy group pairs
energygrp-table =
; Spacing for the PME/PPPM FFT grid
fourierspacing = 0.08
; FFT grid size, when a value is 0 fourierspacing will be used
fourier-nx = 0
fourier-ny = 0
fourier-nz = 0
; EWALD/PME/PPPM parameters
pme_order = 6
ewald_rtol = 1e-06
ewald-rtol-lj = 0.001
lj-pme-comb-rule = Geometric
ewald-geometry = 3d
epsilon-surface = 0

; IMPLICIT SOLVENT ALGORITHM
implicit-solvent = No

; GENERALIZED BORN ELECTROSTATICS
; Algorithm for calculating Born radii
gb-algorithm = Still
; Frequency of calculating the Born radii inside rlist
nstgbradii = 1
; Cutoff for Born radii calculation; the contribution from atoms
; between rlist and rgbradii is updated every nstlist steps
rgbradii = 1
; Dielectric coefficient of the implicit solvent
gb-epsilon-solvent = 80
; Salt concentration in M for Generalized Born models
gb-saltconc = 0
; Scaling factors used in the OBC GB model. Default values are OBC(II)
gb-obc-alpha = 1
gb-obc-beta = 0.8
gb-obc-gamma = 4.85
gb-dielectric-offset = 0.009
sa-algorithm = Ace-approximation
; Surface tension (kJ/mol/nm^2) for the SA (nonpolar surface) part of GBSA
; The value -1 will set default value for Still/HCT/OBC GB-models.
sa-surface-tension = -1

; OPTIONS FOR WEAK COUPLING ALGORITHMS
; Temperature coupling
tcoupl = No
nsttcouple = -1
nh-chain-length = 10
print-nose-hoover-chain-variables = no
; Groups to couple separately
tc_grps = System
; Time constant (ps) and reference temperature (K)
tau_t = 0.5
ref_t = 298
; pressure coupling
pcoupl = No
pcoupltype = Isotropic
nstpcouple = -1
; Time constant (ps), compressibility (1/bar) and reference P (bar)
tau-p = 1
compressibility =
ref-p =
; Scaling of reference coordinates, No, All or COM
refcoord-scaling = No

; OPTIONS FOR QMMM calculations
QMMM = no
; Groups treated Quantum Mechanically
QMMM-grps =
; QM method
QMmethod =
; QMMM scheme
QMMMscheme = normal
; QM basisset
QMbasis =
; QM charge
QMcharge =
; QM multiplicity
QMmult =
; Surface Hopping
SH =
; CAS space options
CASorbitals =
CASelectrons =
SAon =
SAoff =
SAsteps =
; Scale factor for MM charges
MMChargeScaleFactor = 1

; SIMULATED ANNEALING
; Type of annealing for each temperature group (no/single/periodic)
annealing =
; Number of time points to use for specifying annealing in each group
annealing-npoints =
; List of times at the annealing points for each group
annealing-time =
; Temp. at each annealing point, for each group.
annealing-temp =

; GENERATE VELOCITIES FOR STARTUP RUN
gen_vel = yes
gen_temp = 298
gen_seed = 173529

; OPTIONS FOR BONDS
constraints = none
; Type of constraint algorithm
constraint-algorithm = Lincs
; Do not constrain the start configuration
continuation = no
; Use successive overrelaxation to reduce the number of shake iterations
Shake-SOR = no
; Relative tolerance of shake
shake-tol = 0.0001
; Highest order in the expansion of the constraint coupling matrix
lincs-order = 4
; Number of iterations in the final step of LINCS. 1 is fine for
; normal simulations, but use 2 to conserve energy in NVE runs.
; For energy minimization with constraints it should be 4 to 8.
lincs-iter = 1
; Lincs will write a warning to the stderr if in one step a bond
; rotates over more degrees than
lincs-warnangle = 30
; Convert harmonic bonds to morse potentials
morse = no

; ENERGY GROUP EXCLUSIONS
; Pairs of energy groups for which all non-bonded interactions are excluded
energygrp-excl =

; WALLS
; Number of walls, type, atom types, densities and box-z scale factor for Ewald
nwall = 0
wall-type = 9-3
wall-r-linpot = -1
wall-atomtype =
wall-density =
wall-ewald-zfac = 3

; COM PULLING
pull = no

; AWH biasing
awh = no

; ENFORCED ROTATION
; Enforced rotation: No or Yes
rotation = no

; Group to display and/or manipulate in interactive MD session
IMD-group =

; NMR refinement stuff
; Distance restraints type: No, Simple or Ensemble
disre = No
; Force weighting of pairs in one distance restraint: Conservative or Equal
disre-weighting = Conservative
; Use sqrt of the time averaged times the instantaneous violation
disre-mixed = no
disre-fc = 1000
disre-tau = 0
; Output frequency for pair distances to energy file
nstdisreout = 100
; Orientation restraints: No or Yes
orire = no
; Orientation restraints force constant and tau for time averaging
orire-fc = 0
orire-tau = 0
orire-fitgrp =
; Output frequency for trace(SD) and S to energy file
nstorireout = 100

; Free energy variables
free-energy = no
couple-moltype =
couple-lambda0 = vdw-q
couple-lambda1 = vdw-q
couple-intramol = no
init-lambda = -1
init-lambda-state = -1
delta-lambda = 0
nstdhdl = 50
fep-lambdas =
mass-lambdas =
coul-lambdas =
vdw-lambdas =
bonded-lambdas =
restraint-lambdas =
temperature-lambdas =
calc-lambda-neighbors = 1
init-lambda-weights =
dhdl-print-energy = no
sc-alpha = 0
sc-power = 1
sc-r-power = 6
sc-sigma = 0.3
sc-coul = no
separate-dhdl-file = yes
dhdl-derivatives = yes
dh_hist_size = 0
dh_hist_spacing = 0.1

; Non-equilibrium MD stuff
acc-grps =
accelerate =
freezegrps =
freezedim =
cos-acceleration = 0
deform =

; simulated tempering variables
simulated-tempering = no
simulated-tempering-scaling = geometric
sim-temp-low = 300
sim-temp-high = 300

; Ion/water position swapping for computational electrophysiology setups
; Swap positions along direction: no, X, Y, Z
swapcoords = no
adress = no

; User defined thingies
user1-grps =
user2-grps =
userint1 = 0
userint2 = 0
userint3 = 0
userint4 = 0
userreal1 = 0
userreal2 = 0
userreal3 = 0
userreal4 = 0
; Electric fields
; Format for electric-field-x, etc. is: four real variables:
; amplitude (V/nm), frequency omega (1/ps), time for the pulse peak (ps),
; and sigma (ps) width of the pulse. Omega = 0 means static field,
; sigma = 0 means no pulse, leaving the field to be a cosine function.
electric-field-x = 0 0 0 0
electric-field-y = 0 0 0 0
electric-field-z = 0 0 0 0
Binary file not shown.
Loading
Loading