Skip to content

Commit

Permalink
Use code on the Hub from another repo (huggingface#22698)
Browse files Browse the repository at this point in the history
* initial work

* Add other classes

* Refactor code

* Move warning and fix dynamic pipeline

* Issue warning when necessary

* Add test
  • Loading branch information
sgugger authored Apr 17, 2023
1 parent 4d2c52e commit ea7b0a5
Show file tree
Hide file tree
Showing 12 changed files with 98 additions and 66 deletions.
5 changes: 5 additions & 0 deletions src/transformers/configuration_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -667,6 +667,11 @@ def _get_config_dict(
else:
logger.info(f"loading configuration file {configuration_file} from cache at {resolved_config_file}")

if "auto_map" in config_dict and not is_local:
config_dict["auto_map"] = {
k: (f"{pretrained_model_name_or_path}--{v}" if "--" not in v else v)
for k, v in config_dict["auto_map"].items()
}
return config_dict, kwargs

@classmethod
Expand Down
48 changes: 41 additions & 7 deletions src/transformers/dynamic_module_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
extract_commit_hash,
is_offline_mode,
logging,
try_to_load_from_cache,
)


Expand Down Expand Up @@ -222,11 +223,16 @@ def get_cached_module_file(

# Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file.
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
is_local = os.path.isdir(pretrained_model_name_or_path)
if is_local:
submodule = pretrained_model_name_or_path.split(os.path.sep)[-1]
else:
submodule = pretrained_model_name_or_path.replace("/", os.path.sep)
cached_module = try_to_load_from_cache(
pretrained_model_name_or_path, module_file, cache_dir=cache_dir, revision=_commit_hash
)

new_files = []
try:
# Load from URL or cache if already cached
resolved_module_file = cached_file(
Expand All @@ -241,6 +247,8 @@ def get_cached_module_file(
revision=revision,
_commit_hash=_commit_hash,
)
if not is_local and cached_module != resolved_module_file:
new_files.append(module_file)

except EnvironmentError:
logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
Expand Down Expand Up @@ -284,7 +292,7 @@ def get_cached_module_file(
importlib.invalidate_caches()
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / module_needed).exists():
if not (submodule_path / f"{module_needed}.py").exists():
get_cached_module_file(
pretrained_model_name_or_path,
f"{module_needed}.py",
Expand All @@ -295,14 +303,24 @@ def get_cached_module_file(
use_auth_token=use_auth_token,
revision=revision,
local_files_only=local_files_only,
_commit_hash=commit_hash,
)
new_files.append(f"{module_needed}.py")

if len(new_files) > 0:
new_files = "\n".join([f"- {f}" for f in new_files])
logger.warning(
f"A new version of the following files was downloaded from {pretrained_model_name_or_path}:\n{new_files}"
"\n. Make sure to double-check they do not contain any added malicious code. To avoid downloading new "
"versions of the code file, you can pin a revision."
)

return os.path.join(full_submodule, module_file)


def get_class_from_dynamic_module(
class_reference: str,
pretrained_model_name_or_path: Union[str, os.PathLike],
module_file: str,
class_name: str,
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
resume_download: bool = False,
Expand All @@ -323,6 +341,8 @@ def get_class_from_dynamic_module(
</Tip>
Args:
class_reference (`str`):
The full name of the class to load, including its module and optionally its repo.
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
Expand All @@ -332,6 +352,7 @@ def get_class_from_dynamic_module(
- a path to a *directory* containing a configuration file saved using the
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
This is used when `class_reference` does not specify another repo.
module_file (`str`):
The name of the module file containing the class to look for.
class_name (`str`):
Expand Down Expand Up @@ -371,12 +392,25 @@ def get_class_from_dynamic_module(
```python
# Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this
# module.
cls = get_class_from_dynamic_module("sgugger/my-bert-model", "modeling.py", "MyBertModel")
cls = get_class_from_dynamic_module("modeling.MyBertModel", "sgugger/my-bert-model")
# Download module `modeling.py` from a given repo and cache then extract the class `MyBertModel` from this
# module.
cls = get_class_from_dynamic_module("sgugger/my-bert-model--modeling.MyBertModel", "sgugger/another-bert-model")
```"""
# Catch the name of the repo if it's specified in `class_reference`
if "--" in class_reference:
repo_id, class_reference = class_reference.split("--")
# Invalidate revision since it's not relevant for this repo
revision = "main"
else:
repo_id = pretrained_model_name_or_path
module_file, class_name = class_reference.split(".")

# And lastly we get the class inside our newly created module
final_module = get_cached_module_file(
pretrained_model_name_or_path,
module_file,
repo_id,
module_file + ".py",
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
Expand Down
15 changes: 6 additions & 9 deletions src/transformers/models/auto/auto_factory.py
Original file line number Diff line number Diff line change
Expand Up @@ -403,8 +403,12 @@ def from_config(cls, config, **kwargs):
"no malicious code has been contributed in a newer revision."
)
class_ref = config.auto_map[cls.__name__]
if "--" in class_ref:
repo_id, class_ref = class_ref.split("--")
else:
repo_id = config.name_or_path
module_file, class_name = class_ref.split(".")
model_class = get_class_from_dynamic_module(config.name_or_path, module_file + ".py", class_name, **kwargs)
model_class = get_class_from_dynamic_module(repo_id, module_file + ".py", class_name, **kwargs)
return model_class._from_config(config, **kwargs)
elif type(config) in cls._model_mapping.keys():
model_class = _get_model_class(config, cls._model_mapping)
Expand Down Expand Up @@ -452,17 +456,10 @@ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
"on your local machine. Make sure you have read the code there to avoid malicious use, then set "
"the option `trust_remote_code=True` to remove this error."
)
if hub_kwargs.get("revision", None) is None:
logger.warning(
"Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure "
"no malicious code has been contributed in a newer revision."
)
class_ref = config.auto_map[cls.__name__]
module_file, class_name = class_ref.split(".")
model_class = get_class_from_dynamic_module(
pretrained_model_name_or_path, module_file + ".py", class_name, **hub_kwargs, **kwargs
class_ref, pretrained_model_name_or_path, **hub_kwargs, **kwargs
)
model_class.register_for_auto_class(cls.__name__)
return model_class.from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs
)
Expand Down
11 changes: 1 addition & 10 deletions src/transformers/models/auto/configuration_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -921,17 +921,8 @@ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
" repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
" set the option `trust_remote_code=True` to remove this error."
)
if kwargs.get("revision", None) is None:
logger.warning(
"Explicitly passing a `revision` is encouraged when loading a configuration with custom code to "
"ensure no malicious code has been contributed in a newer revision."
)
class_ref = config_dict["auto_map"]["AutoConfig"]
module_file, class_name = class_ref.split(".")
config_class = get_class_from_dynamic_module(
pretrained_model_name_or_path, module_file + ".py", class_name, **kwargs
)
config_class.register_for_auto_class()
config_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)
return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif "model_type" in config_dict:
config_class = CONFIG_MAPPING[config_dict["model_type"]]
Expand Down
10 changes: 1 addition & 9 deletions src/transformers/models/auto/feature_extraction_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -333,17 +333,9 @@ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
"in that repo on your local machine. Make sure you have read the code there to avoid "
"malicious use, then set the option `trust_remote_code=True` to remove this error."
)
if kwargs.get("revision", None) is None:
logger.warning(
"Explicitly passing a `revision` is encouraged when loading a feature extractor with custom "
"code to ensure no malicious code has been contributed in a newer revision."
)

module_file, class_name = feature_extractor_auto_map.split(".")
feature_extractor_class = get_class_from_dynamic_module(
pretrained_model_name_or_path, module_file + ".py", class_name, **kwargs
feature_extractor_auto_map, pretrained_model_name_or_path, **kwargs
)
feature_extractor_class.register_for_auto_class()
else:
feature_extractor_class = feature_extractor_class_from_name(feature_extractor_class)

Expand Down
10 changes: 1 addition & 9 deletions src/transformers/models/auto/image_processing_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -355,17 +355,9 @@ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
"in that repo on your local machine. Make sure you have read the code there to avoid "
"malicious use, then set the option `trust_remote_code=True` to remove this error."
)
if kwargs.get("revision", None) is None:
logger.warning(
"Explicitly passing a `revision` is encouraged when loading a image processor with custom "
"code to ensure no malicious code has been contributed in a newer revision."
)

module_file, class_name = image_processor_auto_map.split(".")
image_processor_class = get_class_from_dynamic_module(
pretrained_model_name_or_path, module_file + ".py", class_name, **kwargs
image_processor_auto_map, pretrained_model_name_or_path, **kwargs
)
image_processor_class.register_for_auto_class()
else:
image_processor_class = image_processor_class_from_name(image_processor_class)

Expand Down
9 changes: 1 addition & 8 deletions src/transformers/models/auto/processing_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -254,17 +254,10 @@ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
"in that repo on your local machine. Make sure you have read the code there to avoid "
"malicious use, then set the option `trust_remote_code=True` to remove this error."
)
if kwargs.get("revision", None) is None:
logger.warning(
"Explicitly passing a `revision` is encouraged when loading a feature extractor with custom "
"code to ensure no malicious code has been contributed in a newer revision."
)

module_file, class_name = processor_auto_map.split(".")
processor_class = get_class_from_dynamic_module(
pretrained_model_name_or_path, module_file + ".py", class_name, **kwargs
processor_auto_map, pretrained_model_name_or_path, **kwargs
)
processor_class.register_for_auto_class()
else:
processor_class = processor_class_from_name(processor_class)

Expand Down
12 changes: 1 addition & 11 deletions src/transformers/models/auto/tokenization_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -671,22 +671,12 @@ def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
" repo on your local machine. Make sure you have read the code there to avoid malicious use,"
" then set the option `trust_remote_code=True` to remove this error."
)
if kwargs.get("revision", None) is None:
logger.warning(
"Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure"
" no malicious code has been contributed in a newer revision."
)

if use_fast and tokenizer_auto_map[1] is not None:
class_ref = tokenizer_auto_map[1]
else:
class_ref = tokenizer_auto_map[0]

module_file, class_name = class_ref.split(".")
tokenizer_class = get_class_from_dynamic_module(
pretrained_model_name_or_path, module_file + ".py", class_name, **kwargs
)
tokenizer_class.register_for_auto_class()
tokenizer_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)

elif use_fast and not config_tokenizer_class.endswith("Fast"):
tokenizer_class_candidate = f"{config_tokenizer_class}Fast"
Expand Down
3 changes: 1 addition & 2 deletions src/transformers/pipelines/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -727,9 +727,8 @@ def pipeline(
" set the option `trust_remote_code=True` to remove this error."
)
class_ref = targeted_task["impl"]
module_file, class_name = class_ref.split(".")
pipeline_class = get_class_from_dynamic_module(
model, module_file + ".py", class_name, revision=revision, use_auth_token=use_auth_token
class_ref, model, revision=revision, use_auth_token=use_auth_token
)
else:
normalized_task, targeted_task, task_options = check_task(task)
Expand Down
12 changes: 11 additions & 1 deletion src/transformers/tokenization_utils_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -1817,6 +1817,7 @@ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir=cache_dir,
local_files_only=local_files_only,
_commit_hash=commit_hash,
_is_local=is_local,
**kwargs,
)

Expand All @@ -1831,6 +1832,7 @@ def _from_pretrained(
cache_dir=None,
local_files_only=False,
_commit_hash=None,
_is_local=False,
**kwargs,
):
# We instantiate fast tokenizers based on a slow tokenizer if we don't have access to the tokenizer.json
Expand Down Expand Up @@ -1861,14 +1863,22 @@ def _from_pretrained(
# First attempt. We get tokenizer_class from tokenizer_config to check mismatch between tokenizers.
config_tokenizer_class = init_kwargs.get("tokenizer_class")
init_kwargs.pop("tokenizer_class", None)
init_kwargs.pop("auto_map", None)
saved_init_inputs = init_kwargs.pop("init_inputs", ())
if not init_inputs:
init_inputs = saved_init_inputs
else:
config_tokenizer_class = None
init_kwargs = init_configuration

if "auto_map" in init_kwargs and not _is_local:
new_auto_map = {}
for key, value in init_kwargs["auto_map"].items():
if isinstance(value, (list, tuple)):
new_auto_map[key] = [f"{pretrained_model_name_or_path}--{v}" for v in value]
else:
new_auto_map[key] = f"{pretrained_model_name_or_path}--{value}"
init_kwargs["auto_map"] = new_auto_map

if config_tokenizer_class is None:
from .models.auto.configuration_auto import AutoConfig # tests_ignore

Expand Down
1 change: 1 addition & 0 deletions src/transformers/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,7 @@
is_remote_url,
move_cache,
send_example_telemetry,
try_to_load_from_cache,
)
from .import_utils import (
ENV_VARS_TRUE_AND_AUTO_VALUES,
Expand Down
28 changes: 28 additions & 0 deletions tests/models/auto/test_modeling_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -298,6 +298,34 @@ def test_from_pretrained_dynamic_model_distant(self):
for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
self.assertTrue(torch.equal(p1, p2))

def test_from_pretrained_dynamic_model_distant_with_ref(self):
model = AutoModel.from_pretrained("hf-internal-testing/ref_to_test_dynamic_model", trust_remote_code=True)
self.assertEqual(model.__class__.__name__, "NewModel")

# Test model can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
self.assertTrue(torch.equal(p1, p2))

# This one uses a relative import to a util file, this checks it is downloaded and used properly.
model = AutoModel.from_pretrained(
"hf-internal-testing/ref_to_test_dynamic_model_with_util", trust_remote_code=True
)
self.assertEqual(model.__class__.__name__, "NewModel")

# Test model can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
self.assertTrue(torch.equal(p1, p2))

def test_new_model_registration(self):
AutoConfig.register("custom", CustomConfig)

Expand Down

0 comments on commit ea7b0a5

Please sign in to comment.