Skip to content

Commit

Permalink
fix: load_best_model_at_end error when load_in_8bit is True (huggingf…
Browse files Browse the repository at this point in the history
…ace#23443)

Ref: huggingface/peft#394
    Loading a quantized checkpoint into non-quantized Linear8bitLt is not supported.
    call module.cuda() before module.load_state_dict()
  • Loading branch information
dkqkxx authored and novice03 committed Jun 23, 2023
1 parent a565dc3 commit f634ce3
Showing 1 changed file with 27 additions and 8 deletions.
35 changes: 27 additions & 8 deletions src/transformers/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -2226,16 +2226,35 @@ def _load_best_model(self):
state_dict["_smp_is_partial"] = False
load_result = model.load_state_dict(state_dict, strict=True)
else:
# We load the model state dict on the CPU to avoid an OOM error.
if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu")
if hasattr(model, "base_model") and getattr(model.base_model, "is_8bit_serializable", False):
# If train base_8_bit_models using PEFT & LoRA, assume that adapter have been saved properly.
if hasattr(model, "active_adapter") and hasattr(model, "load_adapter"):
if os.path.exists(os.path.join(self.state.best_model_checkpoint, "adapter_model.bin")):
model.load_adapter(self.state.best_model_checkpoint, model.active_adapter)
# Load_adapter has no return value present, modify it when appropriate.
from torch.nn.modules.module import _IncompatibleKeys

load_result = _IncompatibleKeys([], [])
else:
logger.warning(
"The intermediate checkpoints of PEFT may not be saved correctly, "
"using `TrainerCallback` to save adapter_model.bin in corresponding folders, "
"here are some examples https://github.com/huggingface/peft/issues/96"
)
else:
# We can't do pure 8bit training using transformers.
logger.warning("Could not loading a quantized checkpoint.")
else:
state_dict = torch.load(best_model_path, map_location="cpu")
# We load the model state dict on the CPU to avoid an OOM error.
if self.args.save_safetensors and os.path.isfile(best_safe_model_path):
state_dict = safetensors.torch.load_file(best_safe_model_path, device="cpu")
else:
state_dict = torch.load(best_model_path, map_location="cpu")

# If the model is on the GPU, it still works!
# workaround for FSDP bug https://github.com/pytorch/pytorch/issues/82963
# which takes *args instead of **kwargs
load_result = model.load_state_dict(state_dict, False)
# If the model is on the GPU, it still works!
# workaround for FSDP bug https://github.com/pytorch/pytorch/issues/82963
# which takes *args instead of **kwargs
load_result = model.load_state_dict(state_dict, False)
if not is_sagemaker_mp_enabled():
self._issue_warnings_after_load(load_result)
elif os.path.exists(os.path.join(self.state.best_model_checkpoint, WEIGHTS_INDEX_NAME)):
Expand Down

0 comments on commit f634ce3

Please sign in to comment.