Skip to content

nschloe/scipyx

Folders and files

NameName
Last commit message
Last commit date

Latest commit

1685430 · Dec 9, 2021

History

62 Commits
Oct 19, 2021
Dec 9, 2021
Oct 19, 2021
Apr 28, 2021
Apr 28, 2021
Apr 30, 2021
Oct 19, 2021
Apr 28, 2021
Apr 28, 2021
Apr 28, 2021
Oct 19, 2021
Sep 2, 2021
Apr 28, 2021
Dec 9, 2021
May 26, 2021

Repository files navigation

scipyx

PyPi Version PyPI pyversions GitHub stars PyPi downloads

gh-actions codecov LGTM Code style: black

SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is almost always avoided, even if the API of some methods is arguably lacking. This package provides drop-in wrappers "fixing" those.

npx does the same for NumPy.

If you have a fix for a SciPy method that can't go upstream for some reason, feel free to PR here.

Krylov methods

import numpy as np
import scipy.sparse
import scipyx as spx

# create tridiagonal (-1, 2, -1) matrix
n = 100
data = -np.ones((3, n))
data[1] = 2.0
A = scipy.sparse.spdiags(data, [-1, 0, 1], n, n)
A = A.tocsr()
b = np.ones(n)


sol, info = spx.cg(A, b, tol=1.0e-10)
sol, info = spx.minres(A, b, tol=1.0e-10)
sol, info = spx.gmres(A, b, tol=1.0e-10)
sol, info = spx.bicg(A, b, tol=1.0e-10)
sol, info = spx.bicgstab(A, b, tol=1.0e-10)
sol, info = spx.cgs(A, b, tol=1.0e-10)
sol, info = spx.qmr(A, b, tol=1.0e-10)

sol is the solution of the linear system A @ x = b (or None if no convergence), and info contains some useful data, e.g., info.resnorms. The solution sol and all callback x have the shape of x0/b. The methods are wrappers around SciPy's iterative solvers.

Relevant issues:

Optimization

import scipyx as spx


def f(x):
    return (x ** 2 - 2) ** 2


x0 = 1.5
out = spx.minimize(f, x0)
print(out.x)

x0 = -3.2
x, _ = spx.leastsq(f, x0)
print(x)

In scipyx, all intermediate values x and the result from a minimization out.x will have the same shape as x0. (In SciPy, they always have shape (n,), no matter the input vector.)

Relevant issues:

Root-finding

import scipyx as spx


def f(x):
    return x ** 2 - 2


a, b = spx.bisect(f, 0.0, 5.0, tol=1.0e-12)
a, b = spx.regula_falsi(f, 0.0, 5.0, tol=1.0e-12)

scipyx provides some basic nonlinear root-findings algorithms: bisection and regula falsi. They're not as fast-converging as other methods, but are very robust and work with almost any function.

Rolling Lagrange interpolation

import numpy as np
import scipyx as spx


x = np.linspace(0.0, 1.0, 11)
y = np.sin(7.0 * x)

poly = spx.interp_rolling_lagrange(x, y, order=3)

Given an array of coordinates x and an array of values y, you can use scipyx to compute a piecewise polynomial Lagrange approximation. The order + 1 closest coordinates x/y are considered for each interval.

Order 0 Order 1 Order 2

Jacobi elliptic functions with complex argument

SciPy supports Jacobi elliptic functions as ellipj. Unfortunately, only real-valued argument u and parameter m are allowed. scipyx expands support to complex-valued argument u.

import scipyx as spx

u = 1.0 + 2.0j
m = 0.8
# sn, cn, dn, ph = scipy.special.ellipj(x, m)  # not working
sn, cn, dn, ph = spx.ellipj(u, m)

Relevant bug reports:

License

This software is published under the BSD-3-Clause license.