This repository contains the source code of the paper "Effective Modeling of Encoder-Decoder Architecture for Joint Entity and Relation Extraction" published in AAAI 2020.
NYT24 and NYT29 datasets used for experiments in the paper can be downloaded from the following link:
https://drive.google.com/drive/folders/1RPD9kuHUHp4O3gQLLD1CgDPigAlRiR7L?usp=sharing
- python3.5
- pytorch 1.1.0
- CUDA 8.0
python3.5 word_decoder.py gpu_id random_seed source_data_dir target_data_dit train/test
python3.5 word_decoder.py 0 1023 NYT29/ NYT29/word_decode_model train
python3.5 word_decoder.py 0 1023 NYT29/ NYT29/word_decode_model test
python3.5 ptrnet_decoder.py gpu_id random_seed source_data_dir target_data_dit train/test
python3.5 ptrnet_decoder.py 0 1023 NYT29/ NYT29/ptrnet_decode_model train
python3.5 ptrnet_decoder.py 0 1023 NYT29/ NYT29/ptrnet_decode_model test
https://arxiv.org/abs/1911.09886
If you use the source code or models from this work, please cite our paper:
@inproceedings{nayak2019ptrnetdecoding,
author = {Nayak, Tapas and Ng, Hwee Tou},
title = {Effective Modeling of Encoder-Decoder Architecture for Joint Entity and Relation Extraction},
booktitle = {Proceedings of The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI)},
year = {2020}
}