Skip to content

Latest commit

 

History

History

mpt

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

MPT

This document explains how to build the MPT model using TensorRT-LLM and run on a single GPU and a single node with multiple GPUs.

Overview

The TensorRT-LLM MPT implementation can be found in tensorrt_llm/models/mpt/model.py. The TensorRT-LLM MPT example code is located in examples/mpt. There is one main file:

In addition, there are two shared files in the parent folder examples for inference and evaluation:

Support Matrix

  • FP16
  • FP8 (with FP8 KV Cache)
  • INT8 & INT4 Weight-Only
  • INT8 Smooth Quant
  • INT4 AWQ
  • Tensor Parallel
  • MHA, MQA & GQA
  • STRONGLY TYPED

MPT 7B

The convert_checkpoint.py script allows you to convert weights from HF Transformers format to TRTLLM checkpoints.

1.1 Convert from HF Transformers in FP

# Generate FP16 checkpoints.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/fp16/ --dtype float16

# Generate FP32 checkpoints with TP=4.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/fp32_tp4/ --dtype float32 --tp_size 4

1.2 Convert from HF Transformers with weight-only quantization

# Use int8 weight-only quantization.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/int8_wo/ --use_weight_only

# Use int4 weight-only quantization.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/int4_wo/ --use_weight_only --weight_only_precision int4

1.3 Convert from HF Transformers with SmoothQuant quantization

# Use int8 smoothquant (weight and activation) quantization.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/int8_sq/ --smoothquant 0.5

1.4 Convert from HF Transformers with INT8 KV cache quantization

# Use int8 kv cache quantization.
python convert_checkpoint.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/fp16_int8kv/ --dtype float16 --calibrate_kv_cache

INT8-KV-cache can be used with SQ and Weight-only at the same time

We now introduce AMMO to do all quantization First make sure AMMO toolkit is installed (see examples/quantization/README.md)

1.5 AWQ weight-only quantization with AMMO

# INT4 AWQ quantization using AMMO.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/int4_awq/ --qformat int4_awq

1.6 FP8 Post-Training Quantization with AMMO

# FP8 quantization using AMMO.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/fp8/ --qformat fp8 --kv_cache_dtype fp8

1.6 Weight-only quantization with AMMO

# INT8 Weight-only quantization using AMMO with TP=2.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/int8_wo/ --qformat int8_wo --tp_size 2

# INT4 Weight-only quantization using AMMO.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/int4_wo/ --qformat int4_wo

1.7 SmoothQuant and INT8 KV cache with AMMO

# Use int4 awq quantization.
python ../quantization/quantize.py --model_dir mosaicml/mpt-7b --output_dir ./ckpts/mpt-7b/sq_int8kv/ --qformat int8_sq --kv_cache_dtype int8

INT8-KV-cache can also be used with Weight-only at the same time

2.1 Build TensorRT engine(s)

All of the checkpoint generated by convert_checkpoint.py or quantize.py (AMMO) can share the same building commands.

# Build a single-GPU float16 engine using TRTLLM checkpoints.
trtllm-build --checkpoint_dir=./ckpts/mpt-7b/fp16 \
             --max_batch_size 32 \
             --max_input_len 1024 \
             --max_output_len 512 \
             --gemm_plugin float16 \
             --workers 1 \
             --output_dir ./trt_engines/mpt-7b/fp16

MPT 30B

Same commands can be changed to convert MPT 30B to TRT LLM format. Below is an example to build MPT30B fp16 4-way tensor parallelized TRT engine

1. Convert weights from HF Transformers to TRTLLM format

The convert_checkpoint.py script allows you to convert weights from HF Transformers format to TRTLLM format.

python convert_checkpoint.py --model_dir mosaicml/mpt-30b --output_dir ./ckpts/mpt-30b/fp16_tp4/ --tp_szie 4 --dtype float16

2. Build TensorRT engine(s)

Examples of build invocations:

# Build 4-GPU MPT-30B float16 engines
trtllm-build --checkpoint_dir ./ckpts/mpt-30b/fp16_tp4 \
             --max_batch_size 32 \
             --max_input_len 1024 \
             --max_output_len 512 \
             --gemm_plugin float16 \
             --workers 4 \
             --output_dir ./trt_engines/mpt-30b/fp16_tp4

3. Run TRT engine to check if the build was correct

# Run 4-GPU MPT-30B TRT engine on a sample input prompt
mpirun -n 4 --allow-run-as-root \
    python ../run.py --max_output_len 10 \
                     --engine_dir ./trt_engines/mpt-30b/fp16/4-gpu/ \
                     --tokenizer_dir mosaicml/mpt-30b

Replit Code V-1.5 3B

Same commands can be changed to convert Replit Code V-1.5 3B to TRT LLM format. Below is an example to build Replit Code V-1.5 3B fp16 2-way tensor parallelized TRT engine.

1. Convert weights from HF Transformers to TRTLLM format

The convert_checkpoint.py script allows you to convert weights from HF Transformers format to TRTLLM format.

python convert_checkpoint.py --model_dir ./replit-code-v1_5-3b --output_dir ./ckpts/replit-code-v1_5-3b/bf16_tp2/ --tp_size 2 --dtype bfloat16

2. Build TensorRT engine(s)

Examples of build invocations:

# Build 2-GPU Replit Code V-1.5 3B bfloat16 engines
trtllm-build --checkpoint_dir ./ckpts/replit-code-v1_5-3b/bf16_tp2 \
             --max_batch_size 32 \
             --max_input_len 1024 \
             --max_output_len 512 \
             --gpt_attention_plugin bfloat16 \
             --gemm_plugin bfloat16 \
             --workers 2 \
             --output_dir ./trt_engines/replit-code-v1_5-3b/bf16_tp2

3. Run TRT engine to check if the build was correct

# Run 2-GPU Replit Code V-1.5 3B TRT engine on a sample input prompt
mpirun -n 2 --allow-run-as-root \
    python ../run.py --max_output_len 64 \
                     --input_text "def fibonacci" \
                     --engine_dir ./trt_engines/replit-code-v1_5-3b/bf16_tp2 \
                     --tokenizer_dir ./replit-code-v1_5-3b/

Here is the output of above command.

Input: "def fibonacci"
Output: "(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fibonacci(n-1) + fibonacci(n-2)

print(fibonacci(10))"