-
Notifications
You must be signed in to change notification settings - Fork 304
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
SIFT 代码中有一些疑问,求指教 #8
Comments
您好,您的邮件已收到,谢谢This is an automatic reply, confirming that your e-mail was received.Thank you.
|
文件已经收到,谢谢配合!
|
同学你好,我不是B站的up,未曾发布过SIFT算法相关信息,您是否发错邮件了?
…------------------ 原始邮件 ------------------
发件人: "o0o0o0o0o0o0o/image-processing-from-scratch" ***@***.***>;
发送时间: 2022年3月24日(星期四) 晚上8:30
***@***.***>;
***@***.***>;
主题: [o0o0o0o0o0o0o/image-processing-from-scratch] SIFT 代码中有一些疑问,求指教 (Issue #8)
up你好,b站来的。有一些SIFT代码问题求指教:
1、GuassianKernel( ) 求高斯卷积核的时候为啥不需要归一化咧?
2、LocateKeyPoint()函数中,threshold = 0.5contrastThreshold/(n255SIFT_FIXPT_SCALE),计算差分图像中的噪点阈值时候,这个公式与视频中所讲的0.50.4/n不同,是怎么来的啊?
3、LocateKeyPoint()函数中,计算邻域极值的时候,我注意到这个邻域不是 33,而是34?这是为啥呢?对于i是i-1,但对于j就变成了j+2,不应该是j+1嘛?
eight_neiborhood_prev = img_prev[max(0, i - 1):min(i + 2, img_prev.shape[0]), max(0, j - 1):min(j + 2, img_prev.shape[1])] eight_neiborhood = img[max(0, i - 1):min(i + 2, img.shape[0]), max(0, j - 1):min(j + 2, img.shape[1])] eight_neiborhood_next = img_next[max(0, i - 1):min(i + 2, img_next.shape[0]), max(0, j - 1):min(j + 2, img_next.shape[1])]
—
Reply to this email directly, view it on GitHub, or unsubscribe.
You are receiving this because you are subscribed to this thread.Message ID: ***@***.***>
|
我顺着b站简介来的,可能是发错了……不好意思 : ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
up你好,b站来的。有一些SIFT代码问题求指教:
1、GuassianKernel( ) 求高斯卷积核的时候为啥不需要归一化咧?
2、LocateKeyPoint()函数中,threshold = 0.5contrastThreshold/(n255SIFT_FIXPT_SCALE),计算差分图像中的噪点阈值时候,这个公式与视频中所讲的0.50.4/n不同,是怎么来的啊?
3、LocateKeyPoint()函数中,计算邻域极值的时候,我注意到这个邻域不是 33,而是34?这是为啥呢?对于i是i-1,但对于j就变成了j+2,不应该是j+1嘛?
eight_neiborhood_prev = img_prev[max(0, i - 1):min(i + 2, img_prev.shape[0]), max(0, j - 1):min(j + 2, img_prev.shape[1])] eight_neiborhood = img[max(0, i - 1):min(i + 2, img.shape[0]), max(0, j - 1):min(j + 2, img.shape[1])] eight_neiborhood_next = img_next[max(0, i - 1):min(i + 2, img_next.shape[0]), max(0, j - 1):min(j + 2, img_next.shape[1])]
The text was updated successfully, but these errors were encountered: