Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ML-123][Core] Improve locality handling for native lib loading #124

Merged
merged 1 commit into from
Aug 18, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions mllib-dal/src/main/java/org/apache/spark/ml/util/LibLoader.java
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,8 @@ public final class LibLoader {

private static final Logger log = LoggerFactory.getLogger("LibLoader");

private static boolean isLoaded = false;

/**
* Get temp dir for exacting lib files
*
Expand All @@ -45,11 +47,16 @@ public static String getTempSubDir() {
* Load all native libs
*/
public static synchronized void loadLibraries() throws IOException {
if (isLoaded)
return;

if (!loadLibSYCL()) {
log.debug("SYCL libraries are not available, will load CPU libraries only.");
}
loadLibCCL();
loadLibMLlibDAL();

isLoaded = true;
}

/**
Expand All @@ -74,12 +81,15 @@ private static synchronized Boolean loadLibSYCL() throws IOException {
if (streamIn == null) {
return false;
}
streamIn.close();

loadFromJar(subDir, "libintlc.so.5");
loadFromJar(subDir, "libimf.so");
loadFromJar(subDir, "libirng.so");
loadFromJar(subDir, "libsvml.so");
loadFromJar(subDir, "libOpenCL.so.1");
loadFromJar(subDir, "libsycl.so.5");

return true;
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -88,9 +88,6 @@ class KMeansDALImpl(var nClusters: Int,
// Make sure there is only one result from rank 0
assert(results.length == 1)

// Release native memory for numeric tables
OneDAL.releaseNumericTables(data.sparkContext)

val centerVectors = results(0)._1
val totalCost = results(0)._2
val iterationNum = results(0)._3
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -87,9 +87,6 @@ class PCADALImpl(val k: Int,
// Make sure there is only one result from rank 0
assert(results.length == 1)

// Release native memory for numeric tables
OneDAL.releaseNumericTables(data.sparkContext)

val pc = results(0)._1
val explainedVariance = results(0)._2

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@ import com.intel.daal.services.DaalContext
import org.apache.spark.Partitioner
import org.apache.spark.internal.Logging
import org.apache.spark.ml.recommendation.ALS.Rating
import org.apache.spark.ml.util.LibLoader.loadLibraries
import org.apache.spark.ml.util.Utils.getOneCCLIPPort
import org.apache.spark.ml.util._
import org.apache.spark.rdd.RDD
Expand Down Expand Up @@ -84,9 +83,6 @@ class ALSDALImpl[@specialized(Int, Long) ID: ClassTag]( data: RDD[Rating[ID]],
Rating(p.item, p.user, p.rating)
}
.mapPartitionsWithIndex { (rank, iter) =>
// TODO: Use one-time init to load libraries
loadLibraries()

OneCCL.init(executorNum, rank, kvsIPPort)
val rankId = OneCCL.rankID()

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@ import org.apache.spark.internal.Logging

object OneCCL extends Logging {

LibLoader.loadLibraries()

var cclParam = new CCLParam()

// Run on Executor
Expand Down
14 changes: 3 additions & 11 deletions mllib-dal/src/main/scala/org/apache/spark/ml/util/OneDAL.scala
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,8 @@ import scala.collection.mutable.ArrayBuffer

object OneDAL {

LibLoader.loadLibraries()

private val logger = Logger.getLogger("util.OneDAL")
private val logLevel = Level.INFO

Expand Down Expand Up @@ -119,19 +121,9 @@ object OneDAL {
matrix
}

def releaseNumericTables(sparkContext: SparkContext): Unit = {
sparkContext.getPersistentRDDs
.filter(r => r._2.name == "numericTables")
.foreach { rdd =>
val numericTables = rdd._2.asInstanceOf[RDD[Long]]
numericTables.foreach { address =>
OneDAL.cFreeDataMemory(address)
}
}
}

def rddDoubleToNumericTables(doubles: RDD[Double], executorNum: Int): RDD[Long] = {
require(executorNum > 0)

val doublesTables = doubles.repartition(executorNum).mapPartitions { it: Iterator[Double] =>
val data = it.toArray
// Build DALMatrix, this will load libJavaAPI, libtbb, libtbbmalloc
Expand Down
3 changes: 0 additions & 3 deletions mllib-dal/src/main/scala/org/apache/spark/ml/util/Utils.scala
Original file line number Diff line number Diff line change
Expand Up @@ -117,8 +117,6 @@ object Utils {
// All other functions using native libraries will depend on this function to be called first
//
def checkClusterPlatformCompatibility(sc: SparkContext): Boolean = {
LibLoader.loadLibraries()

// check driver platform compatibility
if (!OneDAL.cCheckPlatformCompatibility()) {
return false
Expand All @@ -128,7 +126,6 @@ object Utils {
val executor_num = Utils.sparkExecutorNum(sc)
val data = sc.parallelize(1 to executor_num, executor_num)
val result = data.mapPartitions { p =>
LibLoader.loadLibraries()
Iterator(OneDAL.cCheckPlatformCompatibility())
}.collect()

Expand Down