Skip to content

ocean-data-challenges/2023_SSH_mapping_train_eNATL60_test_NATL60-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

2023_SSH_mapping_train_eNATL60_test_NATL60

Note

This repository is still under construction, changes are likely to occur.

Motivation

This datachallenge is based on the principle of the SSH Mapping Data Challenge 2020a. The aim is again to compare several methods for reconstructing sequences of Sea Surface Height (SSH) from partial satellite altimeter observations. As in the previous datachallenge, this datachallenge follows the framework of an OSSE (Observation System Simulation Experiment) where "Real" full SSH are from a numerical simulation with a realistic, high-resolution ocean circulation model: the reference simulation. However, this datachallenge proposes to use two separate reference simulations, each covering an entire year, whereas previous datachallenges only used a single simulation covering one year: a first simulation for training methods requiring learning from full SSH fields, and a second for evaluating different reconstruction methods over a full year. On the one hand, this approach enables a longer learning period: a whole year, whereas in previous data challenges, learning was limited to a few months to maintain an independent evaluation period within the same year. Secondly, SSH reconstructions can be validated on a full year of data, totally independent of the learning data, making it possible to study any seasonal effects in reconstruction performance.

Design of experiment

Reference simulations

The two references simulations used are the NATL60-CJM165 and the eNATL60-BLB002 simulations, both based on the NEMO model, tide-free, and with a nature run grid resolution of 1/60°.

  • NATL60-CJM165 covers the North Atlantic region, and provides hourly output data. For more detailed information, please visit this link: NATL60-CJM165 Information.
  • eNATL60-BLB002: This simulation covers an extended area, including the tropical/equatorial Atlantic, the entire Mediterranean Sea, and the Black Sea. It offers a more realistic simulation, including surface pressure forcing, but it does not have the explicit resolution of tides. The nature run grid resolution is 1/60° with hourly output. You can find additional information at this link: eNATL60 Information.

For convenience and memory consideration, we have reinterpolated both of these simulations onto two different grid resolutions: 1/20° and 1/8°. Additionally, we have provided daily mean resampling for these datasets.

Observations

The SSH observations include simulations of seven altimeters data: Jason-3, Sentinel-3a, Sentinel-3b, Cryosat-2, Saral/Altika, Haiyang-2a, Haiyang-2b. This nadir altimeters constellation was operating during the 2019-2020 period. No observation error is considered in this challenge.

Data sequence and use

The reconstruction of the SSH is evaluated on the NATL60 domain over the whole year; however, 20 days are cropped at the beginning and at the end of this period for methods which might suffer from side effets. Therefore, the actual evaluation period (from which the metrics are computed) starts the 2012-10-21 and ends the 2013-09-10.

For reconstruction methods that require learning from complete SSH fields, training is carried out on the eNATL60 domain over the whole year, which corresponds to the period from 2009-07-01 to 2010-06-30. The validation subset can be chosen from the latter.

Periods eNATL NATL diagram

Sub-periods are also considered for the evaluation: 40 days are chosen in the middle of each season:

Sub-periods NATL diagram

Domains for evaluation

As we waim to evaluate the reconstruction performance of the different mapping methods at the scale of the North Atlantic basin, we define 3 different regions for the calculation of reconstruction metrics. The selected regions show strong disparities in terms of ocean variability, but also in terms of spatial coverage by the altimeter constellation due to their different latitudes. They seem a good choice for estimating the performance of the mapping methods in various situations in the North Atlantic basin.

  • GF : [64°O x 49°O , 29°N x 44°N]
  • GRE : [39°O x 24°O , 49°N x 64°N]
  • MAD : [27°O x 12°O , 29°N x 44°N]

evaluation domains : GF, GRE, MAD, CAV

Leaderboard

Click on one of the period below to show the scores associated to each method on each region.

In the tables below, denominations like "4DVarNet-GF 1/20°" mean the model was trained using the 4DVarNet method on the region of GF at a resolution of 1/20°.

The considered metrics are:

  • µ(RMSE): average RMSE score (the closer to 1, the better)
  • σ(RMSE): standard deviation of the RMSE score;
  • λx (°): minimum spatial scale resolved (the closer to 0, the better);
  • λt (days): minimum temporal scale resolved (the closer to 0, the better).
Whole year

Evaluation on GF:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.926 0.011 1.315 13.39 link
4DVarNet-GF 1/20° 0.960 0.007 0.805 5.166 link
4DVarNet-GF 1/8° 0.959 0.006 0.852 5.108 link
4DVarNet-GRE 1/8° 0.933 0.011 1.049 5.791 link
4DVarNet-MAD 1/8° 0.931 0.01 1.075 3.721 link

Evaluation on GRE:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.956 0.006 1.112 15.5 link
4DVarNet-GF 1/20° 0.954 0.008 1.029 6.579 link
4DVarNet-GF 1/8° 0.953 0.007 1.038 5.644 link
4DVarNet-GRE 1/8° 0.972 0.005 0.804 2.62 link
4DVarNet-MAD 1/8° 0.964 0.006 0.891 3.312 link

Evaluation on MAD:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.951 0.008 0.926 21.93 link
4DVarNet-GF 1/20° 0.952 0.01 0.91 6.616 link
4DVarNet-GF 1/8° 0.951 0.009 0.937 5.705 link
4DVarNet-GRE 1/8° 0.965 0.007 0.821 2.566 link
4DVarNet-MAD 1/8° 0.971 0.006 0.72 3.308 link
Mid Autumn

Evaluation on GF:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.941 0.008 1.367 10.22 link
4DVarNet-GF 1/20° 0.970 0.004 0.712 5.009 link
4DVarNet-GF 1/8° 0.967 0.005 0.749 4.77 link
4DVarNet-GRE 1/8° 0.944 0.01 1.179 7.952 link
4DVarNet-MAD 1/8° 0.945 0.006 1.345 9.438 link

Evaluation on GRE:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.958 0.005 1.392 6.36 link
4DVarNet-GF 1/20° 0.956 0.007 1.185 5.99 link
4DVarNet-GF 1/8° 0.956 0.006 1.177 5.64 link
4DVarNet-GRE 1/8° 0.975 0.004 0.823 2.714 link
4DVarNet-MAD 1/8° 0.967 0.004 0.911 3.481 link

Evaluation on MAD:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.952 0.006 1.229 4.4 link
4DVarNet-GF 1/20° 0.949 0.011 1.138 6.935 link
4DVarNet-GF 1/8° 0.950 0.010 1.128 5.674 link
4DVarNet-GRE 1/8° 0.965 0.007 1.002 3.416 link
4DVarNet-MAD 1/8° 0.971 0.007 0.866 3.346 link
Mid Winter

Evaluation on GF:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.926 0.007 1.425 8.15 link
4DVarNet-GF 1/20° 0.957 0.005 0.913 5.69 link
4DVarNet-GF 1/8° 0.957 0.004 0.894 5.31 link
4DVarNet-GRE 1/8° 0.934 0.008 1.172 7.15 link
4DVarNet-MAD 1/8° 0.931 0.008 1.342 6.878 link

Evaluation on GRE:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.953 0.006 1.312 11.01 link
4DVarNet-GF 1/20° 0.948 0.007 1.177 7.268 link
4DVarNet-GF 1/8° 0.948 0.007 1.177 6.948 link
4DVarNet-GRE 1/8° 0.969 0.005 0.828 2.595 link
4DVarNet-MAD 1/8° 0.961 0.006 1.084 3.221 link

Evaluation on MAD:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.943 0.006 1.209 4.72 link
4DVarNet-GF 1/20° 0.943 0.008 1.073 6.27 link
4DVarNet-GF 1/8° 0.942 0.007 1.041 5.39 link
4DVarNet-GRE 1/8° 0.959 0.005 0.876 2.861 link
4DVarNet-MAD 1/8° 0.966 0.005 0.807 3.759 link
Mid Spring

Evaluation on GF:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.921 0.011 1.324 10.44 link
4DVarNet-GF 1/20° 0.955 0.008 0.839 6.549 link
4DVarNet-GF 1/8° 0.955 0.006 0.911 5.74 link
4DVarNet-GRE 1/8° 0.927 0.011 1.049 7.78 link
4DVarNet-MAD 1/8° 0.927 0.007 1.139 10.719 link

Evaluation on GRE:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.958 0.002 1.269 12.24 link
4DVarNet-GF 1/20° 0.958 0.002 0.995 5.839 link
4DVarNet-GF 1/8° 0.956 0.002 0.964 5.257 link
4DVarNet-GRE 1/8° 0.974 0.002 0.775 2.612 link
4DVarNet-MAD 1/8° 0.967 0.002 0.964 3.321 link

Evaluation on MAD:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.951 0.003 1.138 17.65 link
4DVarNet-GF 1/20° 0.954 0.004 0.832 13.83 link
4DVarNet-GF 1/8° 0.952 0.003 0.97 5.742 link
4DVarNet-GRE 1/8° 0.966 0.003 0.832 3.27 link
4DVarNet-MAD 1/8° 0.971 0.001 0.78 3.365 link
Mid Summer

Evaluation on GF:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.923 0.007 1.575 10.04 link
4DVarNet-GF 1/20° 0.958 0.005 0.648 5.56 link
4DVarNet-GF 1/8° 0.956 0.004 0.929 5.56 link
4DVarNet-GRE 1/8° 0.928 0.007 0.937 8.723 link
4DVarNet-MAD 1/8° 0.923 0.006 1.066 10.076 link

Evaluation on GRE:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.963 0.002 1.227 13.09 link
4DVarNet-GF 1/20° 0.961 0.003 1.061 9.484 link
4DVarNet-GF 1/8° 0.958 0.002 1.05 6.54 link
4DVarNet-GRE 1/8° 0.977 0.001 0.75 2.559 link
4DVarNet-MAD 1/8° 0.97 0.002 0.876 3.494 link

Evaluation on MAD:

Method µ(RMSE) σ(RMSE) λx (°) λt (days) Reference
MIOST 0.96 0.002 1.346 12.7 link
4DVarNet-GF 1/20° 0.962 0.003 0.956 14.959 link
4DVarNet-GF 1/8° 0.96 0.003 1.001 6.695 link
4DVarNet-GRE 1/8° 0.97 0.004 0.961 3.909 link
4DVarNet-MAD 1/8° 0.977 0.002 0.782 3.668 link

Data

Data description

The data are available with the following repository structure:

|-- dc_ref
|   |-- eNATL60-BLB002-daily-reg-1_20.nc
|   |-- eNATL60-BLB002-daily-reg-1_8.nc
|   |-- NATL60-CJM165-daily-reg-1_20.nc
|   |-- NATL60-CJM165-daily-reg-1_8.nc
|-- dc_obs
|   |-- eNATL60-BLB002-alongtrack.gz
|   |-- NATL60-CJM165-alongtrack.gz

In the dc_ref repository, daily mean resampling of the reference simulations variables are provided for both eNATL60-BLB002 and NATL60-CJM165 : at the 1/8° (*-*-daily-reg-1_8.nc) and the 1/20° (*-*-daily-reg-1_20.nc) resolution grid.

In the dc_obs repository, the alongtrack files (*-*-alongtrack.gz) store the simulated SSH observations. For both eNATL60-BLB002 and NATL60-CJM165 simulations, the variables are interpolated onto the 2019-2020 nadir altimeter constellation available in CMEMS, i.e., Jason-3, Sentinel-3a, Sentinel-3b, Cryosat-2, Saral/Altika, Haiyang-2a, Haiyang-2b.

  • For the NATL60-CJM165 datasets, you will find the following variables:

    coordinates:
        lat: latitude vector [degree north]
        lon: longitude vector [degree east]
        time: time vector [date time]
    
    variables:
        ssh: sea surface height simulated by the model [meters]
        mdt: mean dynamic topography, computed as the temporal averaged simulated ssh [meters]
        ssh_variance: variance map of the ssh variable [meters²]
        sla: sea level anomaly, computed as: sla = ssh - mdt [meters]
        ssh_norm: normalized ssh (using fir 4dvarnet mapping), computed as: ssh_norm = sla/sqrt(ssh_variance) [no unit]
    
  • For the eNATL60-BLB002 dataset, you will find the following variables:

    coordinates:
        lat: latitude vector [degree north]
        lon: longitude vector [degree east]
        time: time vector [date time]
    
    variables:
        ssh_model_with_HF: sea surface height simulated by the model [meters]
        ssh: sea surface height simulated by the model without high frequency signal, i.e., with DAC ERA-INTERIM ssh signal removed and 25h temporal filtering to remove residual tidal effects [meters]
        mdt: mean dynamic topography, computed as the temporal averaged simulated ssh [meters]
        ssh_variance: variance map of the ssh variable [meters²]
        sla: sea level anomaly, computed as: sla = ssh - mdt [meters]
        ssh_norm: normalized ssh (using fir 4dvarnet mapping), computed as: ssh_norm = sla/sqrt(ssh_variance) [no unit]
    

Download the data

The datasets of simulations daily mean resampling are available at the following links:

  • eNATL60-BLB002 (1/20°):
    https://s3.eu-central-1.wasabisys.com/melody/data_challenge_Daniel_Guillaume/public/dc_ref/eNATL60-BLB002-daily-reg-1_20.nc
    
  • eNATL60-BLB002 (1/8°):
    https://s3.eu-central-1.wasabisys.com/melody/data_challenge_Daniel_Guillaume/public/dc_ref/eNATL60-BLB002-daily-reg-1_8.nc
    
  • NATL60-CJM165 (1/20°) - for evaluation:
    https://s3.eu-central-1.wasabisys.com/melody/data_challenge_Daniel_Guillaume/public/dc_ref/NATL60-CJM165-daily-reg-1_20.nc
    
  • NATL60-CJM165 (1/8°) - for evaluation:
    https://s3.eu-central-1.wasabisys.com/melody/data_challenge_Daniel_Guillaume/public/dc_ref/NATL60-CJM165-daily-reg-1_8.nc
    

The alongtrack files are archived in zip format as they contain a lot of files. They are available at the following links:

  • eNATL60-BLB002 alongtracks:
    https://s3.eu-central-1.wasabisys.com/melody/data_challenge_Daniel_Guillaume/public/dc_obs/eNATL60-BLB002-alongtrack.gz
    
  • NATL60-CJM165 alongtracks:
    https://s3.eu-central-1.wasabisys.com/melody/data_challenge_Daniel_Guillaume/public/dc_obs/NATL60-CJM165-alongtrack.gz
    

To download a file, you can use the wget command. For example, if you want to download NATL60-CJM165 with a resolution of 1/8°:

wget https://s3.eu-central-1.wasabisys.com/melody/data_challenge_Daniel_Guillaume/public/dc_ref/NATL60-CJM165-daily-reg-1_8.nc

To extract an archive in the same directory, use the tar command. For example, if you want to download NATL60's alongtrack and extract it from its archive:

wget https://s3.eu-central-1.wasabisys.com/melody/data_challenge_Daniel_Guillaume/public/dc_obs/NATL60-CJM165-alongtrack.gz

tar -zxvf NATL60-CJM165-alongtrack.gz

Prepare the data

For mapping methods that take as input gridded observations instead of raw along tracks, we provide a binning script alongtrack_binning.ipynb, that interpolates simulated along tracks observations on a daily grid whose spatial resolution is left to the user's choice (1/8° or 1/20°).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published