-
-
Notifications
You must be signed in to change notification settings - Fork 685
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
300 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,298 @@ | ||
/* | ||
package ed25519 implements the Ed25519 EdDSA signature algorithm. | ||
See: | ||
- https://datatracker.ietf.org/doc/html/rfc8032 | ||
- https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf | ||
- https://eprint.iacr.org/2020/1244.pdf | ||
*/ | ||
package ed25519 | ||
|
||
import "core:crypto" | ||
import grp "core:crypto/_edwards25519" | ||
import "core:crypto/sha2" | ||
import "core:mem" | ||
|
||
// PRIVATE_KEY_SIZE is the byte-encoded private key size. | ||
PRIVATE_KEY_SIZE :: 32 | ||
// PUBLIC_KEY_SIZE is the byte-encoded public key size. | ||
PUBLIC_KEY_SIZE :: 32 | ||
// SIGNATURE_SIZE is the byte-encoded signature size. | ||
SIGNATURE_SIZE :: 64 | ||
|
||
@(private) | ||
NONCE_SIZE :: 32 | ||
|
||
// Private_Key is an Ed25519 private key. | ||
Private_Key :: struct { | ||
// WARNING: All of the members are to be treated as internal (ie: | ||
// the Private_Key structure is intended to be opaque). There are | ||
// subtle vulnerabilities that can be introduced if the internal | ||
// values are allowed to be altered. | ||
// | ||
// See: https://github.com/MystenLabs/ed25519-unsafe-libs | ||
_b: [PRIVATE_KEY_SIZE]byte, | ||
_s: grp.Scalar, | ||
_nonce: [NONCE_SIZE]byte, | ||
_pub_key: Public_Key, | ||
_is_initialized: bool, | ||
} | ||
|
||
// Public_Key is an Ed25519 public key. | ||
Public_Key :: struct { | ||
// WARNING: All of the members are to be treated as internal (ie: | ||
// the Public_Key structure is intended to be opaque). | ||
_b: [PUBLIC_KEY_SIZE]byte, | ||
_neg_A: grp.Group_Element, | ||
_is_valid: bool, | ||
_is_initialized: bool, | ||
} | ||
|
||
// private_key_set_bytes decodes a byte-encoded private key, and returns | ||
// true iff the operation was successful. | ||
private_key_set_bytes :: proc(priv_key: ^Private_Key, b: []byte) -> bool { | ||
if len(b) != PRIVATE_KEY_SIZE { | ||
return false | ||
} | ||
|
||
// Derive the private key. | ||
ctx: sha2.Context_512 = --- | ||
h_bytes: [sha2.DIGEST_SIZE_512]byte = --- | ||
sha2.init_512(&ctx) | ||
sha2.update(&ctx, b) | ||
sha2.final(&ctx, h_bytes[:]) | ||
|
||
copy(priv_key._b[:], b) | ||
copy(priv_key._nonce[:], h_bytes[32:]) | ||
grp.sc_set_bytes_rfc8032(&priv_key._s, h_bytes[:32]) | ||
|
||
// Derive the corresponding public key. | ||
A: grp.Group_Element = --- | ||
grp.ge_scalarmult_basepoint(&A, &priv_key._s) | ||
grp.ge_bytes(&A, priv_key._pub_key._b[:]) | ||
grp.ge_negate(&priv_key._pub_key._neg_A, &A) | ||
priv_key._pub_key._is_valid = !grp.ge_is_small_order(&A) | ||
priv_key._pub_key._is_initialized = true | ||
|
||
priv_key._is_initialized = true | ||
|
||
return true | ||
} | ||
|
||
// private_key_bytes sets dst to byte-encoding of priv_key. | ||
private_key_bytes :: proc(priv_key: ^Private_Key, dst: []byte) { | ||
if !priv_key._is_initialized { | ||
panic("crypto/ed25519: uninitialized private key") | ||
} | ||
if len(dst) != PRIVATE_KEY_SIZE { | ||
panic("crypto/ed25519: invalid destination size") | ||
} | ||
|
||
copy(dst, priv_key._b[:]) | ||
} | ||
|
||
// private_key_clear clears priv_key to the uninitialized state. | ||
private_key_clear :: proc "contextless" (priv_key: ^Private_Key) { | ||
mem.zero_explicit(priv_key, size_of(Private_Key)) | ||
} | ||
|
||
// sign writes the signature by priv_key over msg to sig. | ||
sign :: proc(priv_key: ^Private_Key, msg, sig: []byte) { | ||
if !priv_key._is_initialized { | ||
panic("crypto/ed25519: uninitialized private key") | ||
} | ||
if len(sig) != SIGNATURE_SIZE { | ||
panic("crypto/ed25519: invalid destination size") | ||
} | ||
|
||
// 1. Compute the hash of the private key d, H(d) = (h_0, h_1, ..., h_2b-1) | ||
// using SHA-512 for Ed25519. H(d) may be precomputed. | ||
// | ||
// 2. Using the second half of the digest hdigest2 = hb || ... || h2b-1, | ||
// define: | ||
// | ||
// 2.1 For Ed25519, r = SHA-512(hdigest2 || M); Interpret r as a | ||
// 64-octet little-endian integer. | ||
ctx: sha2.Context_512 = --- | ||
digest_bytes: [sha2.DIGEST_SIZE_512]byte = --- | ||
sha2.init_512(&ctx) | ||
sha2.update(&ctx, priv_key._nonce[:]) | ||
sha2.update(&ctx, msg) | ||
sha2.final(&ctx, digest_bytes[:]) | ||
|
||
r: grp.Scalar = --- | ||
grp.sc_set_bytes_wide(&r, &digest_bytes) | ||
|
||
// 3. Compute the point [r]G. The octet string R is the encoding of | ||
// the point [r]G. | ||
R: grp.Group_Element = --- | ||
R_bytes := sig[:32] | ||
grp.ge_scalarmult_basepoint(&R, &r) | ||
grp.ge_bytes(&R, R_bytes) | ||
|
||
// 4. Derive s from H(d) as in the key pair generation algorithm. | ||
// Use octet strings R, Q, and M to define: | ||
// | ||
// 4.1 For Ed25519, digest = SHA-512(R || Q || M). | ||
// Interpret digest as a little-endian integer. | ||
sha2.init_512(&ctx) | ||
sha2.update(&ctx, R_bytes) | ||
sha2.update(&ctx, priv_key._pub_key._b[:]) // Q in NIST terminology. | ||
sha2.update(&ctx, msg) | ||
sha2.final(&ctx, digest_bytes[:]) | ||
|
||
sc: grp.Scalar = --- // `digest` in NIST terminology. | ||
grp.sc_set_bytes_wide(&sc, &digest_bytes) | ||
|
||
// 5. Compute S = (r + digest × s) mod n. The octet string S is the | ||
// encoding of the resultant integer. | ||
grp.sc_mul(&sc, &sc, &priv_key._s) | ||
grp.sc_add(&sc, &sc, &r) | ||
|
||
// 6. Form the signature as the concatenation of the octet strings | ||
// R and S. | ||
grp.sc_bytes(sig[32:], &sc) | ||
|
||
grp.sc_clear(&r) | ||
} | ||
|
||
// public_key_set_bytes decodes a byte-encoded public key, and returns | ||
// true iff the operation was successful. | ||
public_key_set_bytes :: proc "contextless" (pub_key: ^Public_Key, b: []byte) -> bool { | ||
if len(b) != PUBLIC_KEY_SIZE { | ||
return false | ||
} | ||
|
||
A: grp.Group_Element = --- | ||
if !grp.ge_set_bytes(&A, b) { | ||
return false | ||
} | ||
|
||
copy(pub_key._b[:], b) | ||
grp.ge_negate(&pub_key._neg_A, &A) | ||
pub_key._is_valid = !grp.ge_is_small_order(&A) | ||
pub_key._is_initialized = true | ||
|
||
return true | ||
} | ||
|
||
// public_key_set_priv sets pub_key to the public component of priv_key. | ||
public_key_set_priv :: proc(pub_key: ^Public_Key, priv_key: ^Private_Key) { | ||
if !priv_key._is_initialized { | ||
panic("crypto/ed25519: uninitialized public key") | ||
} | ||
|
||
src := &priv_key._pub_key | ||
copy(pub_key._b[:], src._b[:]) | ||
grp.ge_set(&pub_key._neg_A, &src._neg_A) | ||
pub_key._is_valid = src._is_valid | ||
pub_key._is_initialized = src._is_initialized | ||
} | ||
|
||
// public_key_bytes sets dst to byte-encoding of pub_key. | ||
public_key_bytes :: proc(pub_key: ^Public_Key, dst: []byte) { | ||
if !pub_key._is_initialized { | ||
panic("crypto/ed25519: uninitialized public key") | ||
} | ||
if len(dst) != PUBLIC_KEY_SIZE { | ||
panic("crypto/ed25519: invalid destination size") | ||
} | ||
|
||
copy(dst, pub_key._b[:]) | ||
} | ||
|
||
// public_key_equal returns true iff pub_key is equal to other. | ||
public_key_equal :: proc(pub_key, other: ^Public_Key) -> bool { | ||
if !pub_key._is_initialized || !other._is_initialized { | ||
panic("crypto/ed25519: uninitialized public key") | ||
} | ||
|
||
return crypto.compare_constant_time(pub_key._b[:], other._b[:]) == 1 | ||
} | ||
|
||
// verify returns true iff sig is a valid signature by pub_key over msg. | ||
verify :: proc(pub_key: ^Public_Key, msg, sig: []byte) -> bool { | ||
switch { | ||
case !pub_key._is_initialized: | ||
return false | ||
case len(sig) != SIGNATURE_SIZE: | ||
return false | ||
} | ||
|
||
// TLDR: Just use ristretto255. | ||
// | ||
// While there are two "standards" for EdDSA, existing implementations | ||
// diverge (sometimes dramatically). This implementation opts for | ||
// "Algorithm 2" from "Taming the Many EdDSAs", which provides the | ||
// strongest notion of security (SUF-CMA + SBS). | ||
// | ||
// The relevant properties are: | ||
// - Reject non-canonical S. | ||
// - Reject non-canonical A/R. | ||
// - Reject small-order A (Extra non-standard check). | ||
// - Cofactored verification equation. | ||
// | ||
// There are 19 possible non-canonical group element encodings of | ||
// which: | ||
// - 2 are small order (possible but unlikely for R) | ||
// - 10 are mixed order (NEVER produced by a valid sign implementation) | ||
// - 7 are not on the curve | ||
// | ||
// There are 8 small-order group elements, 1 which is in the | ||
// prime-order sub-group, and thus the probability that A is | ||
// small-order is cryptographically insignificant. | ||
// | ||
// While both the RFC and FIPS standard allow for either the | ||
// cofactored or non-cofactored equation. It is possible to | ||
// artificially produce signatures that are valid for one but | ||
// not the other. This will NEVER occur with a valid sign | ||
// implementation. The choice of the latter is to be compatible | ||
// with things like batch verification and FROST. | ||
|
||
s_bytes, r_bytes := sig[32:], sig[:32] | ||
|
||
// 1. Reject the signature if S is not in the range [0, L). | ||
s: grp.Scalar = --- | ||
if !grp.sc_set_bytes(&s, s_bytes) { | ||
return false | ||
} | ||
|
||
// 2. Reject the signature if the public key A is one of 8 small | ||
// order points. | ||
if !pub_key._is_valid { | ||
return false | ||
} | ||
|
||
// 3. Reject the signature if A or R are non-canonical. | ||
// | ||
// Note: All initialized public keys are guaranteed to be canonical. | ||
neg_R: grp.Group_Element = --- | ||
if !grp.ge_set_bytes(&neg_R, r_bytes) { | ||
return false | ||
} | ||
grp.ge_negate(&neg_R, &neg_R) | ||
|
||
// 4. Compute the hash SHA512(R||A||M) and reduce it mod L to get a | ||
// scalar h. | ||
ctx: sha2.Context_512 = --- | ||
h_bytes: [sha2.DIGEST_SIZE_512]byte = --- | ||
sha2.init_512(&ctx) | ||
sha2.update(&ctx, r_bytes) | ||
sha2.update(&ctx, pub_key._b[:]) | ||
sha2.update(&ctx, msg) | ||
sha2.final(&ctx, h_bytes[:]) | ||
|
||
h: grp.Scalar = --- | ||
grp.sc_set_bytes_wide(&h, &h_bytes) | ||
|
||
// 5. Accept if 8(s * G) - 8R - 8(h * A) = 0 | ||
// | ||
// > first compute V = SB − R − hA and then accept if V is one of | ||
// > 8 small order points (or alternatively compute 8V with 3 | ||
// > doublings and check against the neutral element) | ||
V: grp.Group_Element = --- | ||
grp.ge_double_scalarmult_basepoint_vartime(&V, &h, &pub_key._neg_A, &s) | ||
grp.ge_add(&V, &V, &neg_R) | ||
|
||
return grp.ge_is_small_order(&V) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters