Skip to content

Commit

Permalink
Implement accumulator refresh table
Browse files Browse the repository at this point in the history
For each thread persist an accumulator cache for the network, where each
cache contains multiple entries for each of the possible king squares.
When the accumulator needs to be refreshed, the cached entry is used to more
efficiently update the accumulator, instead of rebuilding it from scratch.
This idea, was first described by Luecx (author of Koivisto) and
is commonly referred to as "Finny Tables".

When the accumulator needs to be refreshed, instead of filling it with
biases and adding every piece from scratch, we...

1. Take the `AccumulatorRefreshEntry` associated with the new king bucket
2. Calculate the features to activate and deactivate (from differences
   between bitboards in the entry and bitboards of the actual position)
3. Apply the updates on the refresh entry
4. Copy the content of the refresh entry accumulator to the accumulator
   we were refreshing
5. Copy the bitboards from the position to the refresh entry, to match
   the newly updated accumulator

Results at STC:
https://tests.stockfishchess.org/tests/view/662301573fe04ce4cefc1386
(first version)
https://tests.stockfishchess.org/tests/view/6627fa063fe04ce4cefc6560
(final)

Non-Regression between first and final:
https://tests.stockfishchess.org/tests/view/662801e33fe04ce4cefc660a

STC SMP:
https://tests.stockfishchess.org/tests/view/662808133fe04ce4cefc667c

closes #5183

No functional change
  • Loading branch information
gab8192 authored and Disservin committed Apr 24, 2024
1 parent fcba524 commit 49ef4c9
Show file tree
Hide file tree
Showing 12 changed files with 349 additions and 80 deletions.
19 changes: 13 additions & 6 deletions src/evaluate.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,12 +25,14 @@
#include <iomanip>
#include <iostream>
#include <sstream>
#include <memory>

#include "nnue/network.h"
#include "nnue/nnue_misc.h"
#include "position.h"
#include "types.h"
#include "uci.h"
#include "nnue/nnue_accumulator.h"

namespace Stockfish {

Expand All @@ -45,7 +47,10 @@ int Eval::simple_eval(const Position& pos, Color c) {

// Evaluate is the evaluator for the outer world. It returns a static evaluation
// of the position from the point of view of the side to move.
Value Eval::evaluate(const Eval::NNUE::Networks& networks, const Position& pos, int optimism) {
Value Eval::evaluate(const Eval::NNUE::Networks& networks,
const Position& pos,
Eval::NNUE::AccumulatorCaches& caches,
int optimism) {

assert(!pos.checkers());

Expand All @@ -55,8 +60,8 @@ Value Eval::evaluate(const Eval::NNUE::Networks& networks, const Position& pos,
int nnueComplexity;
int v;

Value nnue = smallNet ? networks.small.evaluate(pos, true, &nnueComplexity, psqtOnly)
: networks.big.evaluate(pos, true, &nnueComplexity, false);
Value nnue = smallNet ? networks.small.evaluate(pos, nullptr, true, &nnueComplexity, psqtOnly)
: networks.big.evaluate(pos, &caches.big, true, &nnueComplexity, false);

const auto adjustEval = [&](int optDiv, int nnueDiv, int npmDiv, int pawnCountConstant,
int pawnCountMul, int npmConstant, int evalDiv,
Expand Down Expand Up @@ -94,20 +99,22 @@ Value Eval::evaluate(const Eval::NNUE::Networks& networks, const Position& pos,
// Trace scores are from white's point of view
std::string Eval::trace(Position& pos, const Eval::NNUE::Networks& networks) {

auto caches = std::make_unique<Eval::NNUE::AccumulatorCaches>();

if (pos.checkers())
return "Final evaluation: none (in check)";

std::stringstream ss;
ss << std::showpoint << std::noshowpos << std::fixed << std::setprecision(2);
ss << '\n' << NNUE::trace(pos, networks) << '\n';
ss << '\n' << NNUE::trace(pos, networks, *caches) << '\n';

ss << std::showpoint << std::showpos << std::fixed << std::setprecision(2) << std::setw(15);

Value v = networks.big.evaluate(pos, false);
Value v = networks.big.evaluate(pos, &caches->big, false);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "NNUE evaluation " << 0.01 * UCIEngine::to_cp(v, pos) << " (white side)\n";

v = evaluate(networks, pos, VALUE_ZERO);
v = evaluate(networks, pos, *caches, VALUE_ZERO);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "Final evaluation " << 0.01 * UCIEngine::to_cp(v, pos) << " (white side)";
ss << " [with scaled NNUE, ...]";
Expand Down
8 changes: 5 additions & 3 deletions src/evaluate.h
Original file line number Diff line number Diff line change
Expand Up @@ -40,14 +40,16 @@ constexpr inline int SmallNetThreshold = 1274, PsqtOnlyThreshold = 2389;

namespace NNUE {
struct Networks;
struct AccumulatorCaches;
}

std::string trace(Position& pos, const Eval::NNUE::Networks& networks);

int simple_eval(const Position& pos, Color c);
Value evaluate(const NNUE::Networks& networks, const Position& pos, int optimism);


Value evaluate(const NNUE::Networks& networks,
const Position& pos,
Eval::NNUE::AccumulatorCaches& caches,
int optimism);
} // namespace Eval

} // namespace Stockfish
Expand Down
4 changes: 3 additions & 1 deletion src/nnue/features/half_ka_v2_hm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
#include "../../bitboard.h"
#include "../../position.h"
#include "../../types.h"
#include "../nnue_common.h"
#include "../nnue_accumulator.h"

namespace Stockfish::Eval::NNUE::Features {

Expand All @@ -49,6 +49,8 @@ void HalfKAv2_hm::append_active_indices(const Position& pos, IndexList& active)
// Explicit template instantiations
template void HalfKAv2_hm::append_active_indices<WHITE>(const Position& pos, IndexList& active);
template void HalfKAv2_hm::append_active_indices<BLACK>(const Position& pos, IndexList& active);
template IndexType HalfKAv2_hm::make_index<WHITE>(Square s, Piece pc, Square ksq);
template IndexType HalfKAv2_hm::make_index<BLACK>(Square s, Piece pc, Square ksq);

// Get a list of indices for recently changed features
template<Color Perspective>
Expand Down
8 changes: 4 additions & 4 deletions src/nnue/features/half_ka_v2_hm.h
Original file line number Diff line number Diff line change
Expand Up @@ -63,10 +63,6 @@ class HalfKAv2_hm {
{PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_KING, PS_NONE,
PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_KING, PS_NONE}};

// Index of a feature for a given king position and another piece on some square
template<Color Perspective>
static IndexType make_index(Square s, Piece pc, Square ksq);

public:
// Feature name
static constexpr const char* Name = "HalfKAv2_hm(Friend)";
Expand Down Expand Up @@ -126,6 +122,10 @@ class HalfKAv2_hm {
static constexpr IndexType MaxActiveDimensions = 32;
using IndexList = ValueList<IndexType, MaxActiveDimensions>;

// Index of a feature for a given king position and another piece on some square
template<Color Perspective>
static IndexType make_index(Square s, Piece pc, Square ksq);

// Get a list of indices for active features
template<Color Perspective>
static void append_active_indices(const Position& pos, IndexList& active);
Expand Down
45 changes: 25 additions & 20 deletions src/nnue/network.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -186,31 +186,33 @@ bool Network<Arch, Transformer>::save(const std::optional<std::string>& filename


template<typename Arch, typename Transformer>
Value Network<Arch, Transformer>::evaluate(const Position& pos,
bool adjusted,
int* complexity,
bool psqtOnly) const {
Value Network<Arch, Transformer>::evaluate(const Position& pos,
AccumulatorCaches::Cache<FTDimensions>* cache,
bool adjusted,
int* complexity,
bool psqtOnly) const {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.

constexpr uint64_t alignment = CacheLineSize;
constexpr int delta = 24;

#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
TransformedFeatureType
transformedFeaturesUnaligned[FeatureTransformer<FTDimensions, nullptr>::BufferSize
+ alignment / sizeof(TransformedFeatureType)];

auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType transformedFeatures
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize];
alignas(alignment) TransformedFeatureType
transformedFeatures[FeatureTransformer<FTDimensions, nullptr>::BufferSize];
#endif

ASSERT_ALIGNED(transformedFeatures, alignment);

const int bucket = (pos.count<ALL_PIECES>() - 1) / 4;
const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket, psqtOnly);
const auto psqt =
featureTransformer->transform(pos, cache, transformedFeatures, bucket, psqtOnly);
const auto positional = !psqtOnly ? (network[bucket]->propagate(transformedFeatures)) : 0;

if (complexity)
Expand Down Expand Up @@ -255,26 +257,29 @@ void Network<Arch, Transformer>::verify(std::string evalfilePath) const {


template<typename Arch, typename Transformer>
void Network<Arch, Transformer>::hint_common_access(const Position& pos, bool psqtOnl) const {
featureTransformer->hint_common_access(pos, psqtOnl);
void Network<Arch, Transformer>::hint_common_access(const Position& pos,
AccumulatorCaches::Cache<FTDimensions>* cache,
bool psqtOnl) const {
featureTransformer->hint_common_access(pos, cache, psqtOnl);
}


template<typename Arch, typename Transformer>
NnueEvalTrace Network<Arch, Transformer>::trace_evaluate(const Position& pos) const {
NnueEvalTrace
Network<Arch, Transformer>::trace_evaluate(const Position& pos,
AccumulatorCaches::Cache<FTDimensions>* cache) const {
// We manually align the arrays on the stack because with gcc < 9.3
// overaligning stack variables with alignas() doesn't work correctly.
constexpr uint64_t alignment = CacheLineSize;

#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize
+ alignment / sizeof(TransformedFeatureType)];
TransformedFeatureType
transformedFeaturesUnaligned[FeatureTransformer<FTDimensions, nullptr>::BufferSize
+ alignment / sizeof(TransformedFeatureType)];

auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
#else
alignas(alignment) TransformedFeatureType transformedFeatures
[FeatureTransformer<Arch::TransformedFeatureDimensions, nullptr>::BufferSize];
alignas(alignment) TransformedFeatureType
transformedFeatures[FeatureTransformer<FTDimensions, nullptr>::BufferSize];
#endif

ASSERT_ALIGNED(transformedFeatures, alignment);
Expand All @@ -284,7 +289,7 @@ NnueEvalTrace Network<Arch, Transformer>::trace_evaluate(const Position& pos) co
for (IndexType bucket = 0; bucket < LayerStacks; ++bucket)
{
const auto materialist =
featureTransformer->transform(pos, transformedFeatures, bucket, false);
featureTransformer->transform(pos, cache, transformedFeatures, bucket, false);
const auto positional = network[bucket]->propagate(transformedFeatures);

t.psqt[bucket] = static_cast<Value>(materialist / OutputScale);
Expand Down
24 changes: 16 additions & 8 deletions src/nnue/network.h
Original file line number Diff line number Diff line change
Expand Up @@ -31,10 +31,10 @@
#include "nnue_architecture.h"
#include "nnue_feature_transformer.h"
#include "nnue_misc.h"
#include "nnue_accumulator.h"

namespace Stockfish::Eval::NNUE {


enum class EmbeddedNNUEType {
BIG,
SMALL,
Expand All @@ -43,6 +43,8 @@ enum class EmbeddedNNUEType {

template<typename Arch, typename Transformer>
class Network {
static constexpr IndexType FTDimensions = Arch::TransformedFeatureDimensions;

public:
Network(EvalFile file, EmbeddedNNUEType type) :
evalFile(file),
Expand All @@ -51,17 +53,20 @@ class Network {
void load(const std::string& rootDirectory, std::string evalfilePath);
bool save(const std::optional<std::string>& filename) const;

Value evaluate(const Position& pos,
AccumulatorCaches::Cache<FTDimensions>* cache,
bool adjusted = false,
int* complexity = nullptr,
bool psqtOnly = false) const;

Value evaluate(const Position& pos,
bool adjusted = false,
int* complexity = nullptr,
bool psqtOnly = false) const;


void hint_common_access(const Position& pos, bool psqtOnl) const;
void hint_common_access(const Position& pos,
AccumulatorCaches::Cache<FTDimensions>* cache,
bool psqtOnl) const;

void verify(std::string evalfilePath) const;
NnueEvalTrace trace_evaluate(const Position& pos) const;
NnueEvalTrace trace_evaluate(const Position& pos,
AccumulatorCaches::Cache<FTDimensions>* cache) const;

private:
void load_user_net(const std::string&, const std::string&);
Expand Down Expand Up @@ -89,6 +94,9 @@ class Network {

// Hash value of evaluation function structure
static constexpr std::uint32_t hash = Transformer::get_hash_value() ^ Arch::get_hash_value();

template<IndexType Size>
friend struct AccumulatorCaches::Cache;
};

// Definitions of the network types
Expand Down
70 changes: 66 additions & 4 deletions src/nnue/nnue_accumulator.h
Original file line number Diff line number Diff line change
Expand Up @@ -28,13 +28,75 @@

namespace Stockfish::Eval::NNUE {

using BiasType = std::int16_t;
using PSQTWeightType = std::int32_t;
using IndexType = std::uint32_t;

// Class that holds the result of affine transformation of input features
template<IndexType Size>
struct alignas(CacheLineSize) Accumulator {
std::int16_t accumulation[2][Size];
std::int32_t psqtAccumulation[2][PSQTBuckets];
bool computed[2];
bool computedPSQT[2];
std::int16_t accumulation[COLOR_NB][Size];
std::int32_t psqtAccumulation[COLOR_NB][PSQTBuckets];
bool computed[COLOR_NB];
bool computedPSQT[COLOR_NB];
};


// AccumulatorCaches struct provides per-thread accumulator caches, where each
// cache contains multiple entries for each of the possible king squares.
// When the accumulator needs to be refreshed, the cached entry is used to more
// efficiently update the accumulator, instead of rebuilding it from scratch.
// This idea, was first described by Luecx (author of Koivisto) and
// is commonly referred to as "Finny Tables".
struct AccumulatorCaches {

template<IndexType Size>
struct alignas(CacheLineSize) Cache {

struct alignas(CacheLineSize) Entry {
BiasType accumulation[COLOR_NB][Size];
PSQTWeightType psqtAccumulation[COLOR_NB][PSQTBuckets];
Bitboard byColorBB[COLOR_NB][COLOR_NB];
Bitboard byTypeBB[COLOR_NB][PIECE_TYPE_NB];

// To initialize a refresh entry, we set all its bitboards empty,
// so we put the biases in the accumulation, without any weights on top
void clear(const BiasType* biases) {

std::memset(byColorBB, 0, sizeof(byColorBB));
std::memset(byTypeBB, 0, sizeof(byTypeBB));

std::memcpy(accumulation[WHITE], biases, Size * sizeof(BiasType));
std::memcpy(accumulation[BLACK], biases, Size * sizeof(BiasType));

std::memset(psqtAccumulation, 0, sizeof(psqtAccumulation));
}
};

template<typename Network>
void clear(const Network& network) {
for (auto& entry : entries)
entry.clear(network.featureTransformer->biases);
}

void clear(const BiasType* biases) {
for (auto& entry : entries)
entry.clear(biases);
}

Entry& operator[](Square sq) { return entries[sq]; }

std::array<Entry, SQUARE_NB> entries;
};

template<typename Networks>
void clear(const Networks& networks) {
big.clear(networks.big);
}

// When adding a new cache for a network, i.e. the smallnet
// the appropriate condition must be added to FeatureTransformer::update_accumulator_refresh.
Cache<TransformedFeatureDimensionsBig> big;
};

} // namespace Stockfish::Eval::NNUE
Expand Down
Loading

0 comments on commit 49ef4c9

Please sign in to comment.