Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Introduces a new NNUE network architecture and associated network parameters The summary of the changes: * Position for each perspective mirrored such that the king is on e..h files. Cuts the feature transformer size in half, while preserving enough knowledge to be good. See https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit#heading=h.b40q4rb1w7on. * The number of neurons after the feature transformer increased two-fold, to 1024x2. This is possibly mostly due to the now very optimized feature transformer update code. * The number of neurons after the second layer is reduced from 16 to 8, to reduce the speed impact. This, perhaps surprisingly, doesn't harm the strength much. See https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit#heading=h.6qkocr97fezq The AffineTransform code did not work out-of-the box with the smaller number of neurons after the second layer, so some temporary changes have been made to add a special case for InputDimensions == 8. Also additional 0 padding is added to the output for some archs that cannot process inputs by <=8 (SSE2, NEON). VNNI uses an implementation that can keep all outputs in the registers while reducing the number of loads by 3 for each 16 inputs, thanks to the reduced number of output neurons. However GCC is particularily bad at optimization here (and perhaps why the current way the affine transform is done even passed sprt) (see https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY/edit# for details) and more work will be done on this in the following days. I expect the current VNNI implementation to be improved and extended to other architectures. The network was trained with a slightly modified version of the pytorch trainer (https://github.com/glinscott/nnue-pytorch); the changes are in official-stockfish/nnue-pytorch#143 The training utilized 2 datasets. dataset A - https://drive.google.com/file/d/1VlhnHL8f-20AXhGkILujnNXHwy9T-MQw/view?usp=sharing dataset B - as described in ba01f4b The training process was as following: train on dataset A for 350 epochs, take the best net in terms of elo at 20k nodes per move (it's fine to take anything from later stages of training). convert the .ckpt to .pt --resume-from-model from the .pt file, train on dataset B for <600 epochs, take the best net. Lambda=0.8, applied before the loss function. The first training command: python3 train.py \ ../nnue-pytorch-training/data/large_gensfen_multipvdiff_100_d9.binpack \ ../nnue-pytorch-training/data/large_gensfen_multipvdiff_100_d9.binpack \ --gpus "$3," \ --threads 1 \ --num-workers 1 \ --batch-size 16384 \ --progress_bar_refresh_rate 20 \ --smart-fen-skipping \ --random-fen-skipping 3 \ --features=HalfKAv2_hm^ \ --lambda=1.0 \ --max_epochs=600 \ --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2 The second training command: python3 serialize.py \ --features=HalfKAv2_hm^ \ ../nnue-pytorch-training/experiment_131/run_6/default/version_0/checkpoints/epoch-499.ckpt \ ../nnue-pytorch-training/experiment_$1/base/base.pt python3 train.py \ ../nnue-pytorch-training/data/michael_commit_b94a65.binpack \ ../nnue-pytorch-training/data/michael_commit_b94a65.binpack \ --gpus "$3," \ --threads 1 \ --num-workers 1 \ --batch-size 16384 \ --progress_bar_refresh_rate 20 \ --smart-fen-skipping \ --random-fen-skipping 3 \ --features=HalfKAv2_hm^ \ --lambda=0.8 \ --max_epochs=600 \ --resume-from-model ../nnue-pytorch-training/experiment_$1/base/base.pt \ --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2 STC: https://tests.stockfishchess.org/tests/view/611120b32a8a49ac5be798c4 LLR: 2.97 (-2.94,2.94) <-0.50,2.50> Total: 22480 W: 2434 L: 2251 D: 17795 Ptnml(0-2): 101, 1736, 7410, 1865, 128 LTC: https://tests.stockfishchess.org/tests/view/611152b32a8a49ac5be798ea LLR: 2.93 (-2.94,2.94) <0.50,3.50> Total: 9776 W: 442 L: 333 D: 9001 Ptnml(0-2): 5, 295, 4180, 402, 6 closes #3646 bench: 5189338
- Loading branch information