Macros which provide useful shortcut combinators, combine sync/async chains, support single and multi thread (sync/async) step by step execution of branches, transform tuple of results to result of tuple.
join!
macros will just return final values. Use it if you are working with iterators/streams etc.try_join!
macros will transpose tuple ofOption
s/Result
s inOption
/Result
of tuple. Use it when you are dealing with options or results. If one of branches producesNone
/Err
at the end of step, next steps execution will be aborted. In case ofasync
macro you can only provideResult
s because::futures::try_join
doesn't supportOption
s.
Use these docs for development, they are more convenient.
- Features
- Macros
- Combinators
- Nested combinators
- Handler
- Let pattern
- Block captures
- Custom configuration
- Demos
- Single thread examples
- Multi thread examples
- Detailed steps example
- Performance. Macros produce well-optimized code (it doesn't use inactive branches during steps, doesn't clone results/options or any other values, doesn't allocate any memory on heap [except wrapping futures into
Box::pin
]) - you can check it withcargo expand
. - Steps allow to write code which depends on results of branches in previous iteration.
- One-line chains which can't be created using pure
Rust
without macros. - Briefness. Less code to express the same flow. Shortcut combinators = less parentheses.
async
macros produce futures, so they can be used in non-async
functions.- Configurability. There're many options which can be configured independently to fully change macro behaviour.
try_join!
- combinesResult
s/Option
s, transposes tuple ofResult
s/Option
s intoResult
/Option
of tuple.
assert_eq!(
try_join!(Ok::<_,()>(1), Ok::<_,()>("2"), Ok::<_,()>(3.0)),
Ok::<_,()>((1, "2", 3.0))
);
try_join_async!
- combines futures, transposes tuple ofResult
s intoResult
of tuple.
assert_eq!(
try_join_async!(ok::<_,()>(1), ok::<_,()>("2"), ok::<_,()>(3.0)).await,
Ok::<_,()>((1, "2", 3.0))
);
try_join_spawn!
- spawnsstd::thread
per each branch and joins results, transposes tuple ofResult
s/Option
s intoResult
/Option
of tuple.
assert_eq!(
try_join_spawn!(Ok::<_,()>(1), Ok::<_,()>("2"), Ok::<_,()>(3.0)),
Ok::<_,()>((1, "2", 3.0))
);
try_spawn!
- alias fortry_join_spawn!
.try_join_async_spawn!
- spawns tokio task usingtokio::spawn
per each branch, transposes tuple ofResult
s intoResult
of tuple.
assert_eq!(
try_join_async_spawn!(ok::<_,()>(1), ok::<_,()>("2"), ok::<_,()>(3.0)).await,
Ok::<_,()>((1, "2", 3.0))
);
try_async_spawn!
- alias fortry_join_async_spawn!
.join!
- combines values.
assert_eq!(
join!(1, "2", 3.0), (1, "2", 3.0)
);
join_async!
- combines futures.
assert_eq!(
join_async!(ready(1), ready("2"), ready(3.0)).await, (1, "2", 3.0)
);
join_spawn!
- spawnsstd::thread
per each branch.
assert_eq!(
join_spawn!(1, "2", 3.0), (1, "2", 3.0)
);
spawn!
- alias forjoin_spawn!
.join_async_spawn!
- spawns tokio task usingtokio::spawn
per each branch.
assert_eq!(
join_async_spawn!(ready(1), ready("2"), ready(3.0)).await, (1, "2", 3.0)
);
async_spawn!
- alias forjoin_async_spawn!
.
- Then:
->
join! { value -> expr }; // => expr(value)
- Map:
|>
join! { value |> expr }; // => value.map(expr)
- AndThen:
=>
join! { value => expr }; // => value.and_then(expr)
- Filter:
?>
join! { value ?> expr }; // => value.filter(expr)
- Dot:
..
or>.
join! { value .. expr }; // => value.expr
join! { value >. expr }; // => value.expr
- Or:
<|
join! { value <| expr }; // => value.or(expr)
- OrElse:
<=
join! { value <= expr }; // => value.or_else(expr)
- MapErr:
!>
join! { value !> expr }; // => value.map_err(expr)
- Collect:
=>[]
(type is optional)
join! { value =>[] T }; // => value.collect::<T>()
join! { value =>[] }; // => value.collect()
- Chain:
>@>
join! { value >@> expr }; // => value.chain(expr)
- FindMap:
?|>@
join! { value ?|>@ expr }; // => value.find_map(expr)
- FilterMap:
?|>
join! { value ?|> expr }; // => value.filter_map(expr)
- Enumerate:
|n>
join! { value |n> }; // => value.enumerate()
- Partition:
?&!>
join! { value ?&!> expr }; // => value.partition(expr)
- Flatten:
^^>
join! { value ^^> }; // => value.flatten()
- Fold:
^@
join! { value ^@ init_expr, fn_expr }; // => value.fold(init_expr, fn_expr)
- TryFold:
?^@
join! { value ?^@ init_expr, fn_expr }; // => value.try_fold(init_expr, fn_expr)
- Find:
?@
join! { value ?@ expr }; // => value.find(expr)
- Zip:
>^>
join! { value >^> expr }; // => value.zip(expr)
- Unzip:
<->
(types are optional)
join! { value <-> A, B, FromA, FromB }; // => value.unzip::<A, B, FromA, FromB>()
join! { value <-> }; // => value.unzip()
- Inspect:
??
join! { value ?? expr }; // => (|value| { (expr)(&value); value })(value) // for sync
join_async! { value ?? expr }; // => value.inspect(expr) // for async
where value
is the previous value.
Every combinator prefixed by ~
will act as deferred action (all actions will wait until completion in every step and only after move to the next one).
- Wrap:
combinator
>>>
combinator
(s)...
try_join! { value => >>> |> |v| v + 2 } // => value.and_then(|value| value.map(|v| v + 2))
Use to enter to nested constructions like
a.and_then(
// >>>
|b| b.and_then(
// >>>
|c| c.and_then(
|v| Ok(v + 2)
)
)
)
- Unwrap:
<<<
try_join! {
value
=> >>>
|> |v| v + 2
<<<
|> |v| Some(v + 4)
} // => value.and_then(|value| value.map(|v| v + 2)).map(|v| Some(v + 4))
Use to move out of nested constructions
a.and_then(
// >>>
|b| b.and_then(
// >>>
|c| c.and_then(
|v| Ok(v + 2)
)
// <<<
)
// <<<
).map(
|v| v + 1
)
might be one of
map
=> Only valid fortry
macros. Will act asresults.map(|(result0, result1, ..)| handler(result0, result1, ..))
assert_eq!(
try_join! {
Some(1),
Some(2),
Some(3),
map => |a, b, c| a + b + c
},
Some(6)
);
and_then
=> Only valid fortry
macros. Will act asresults.and_then(|(result0, result1, ..)| handler(result0, result1, ..))
assert_eq!(
try_join! {
Some(1),
Some(2),
Some(3),
and_then => |a, b, c| Some(a + b + c)
},
Some(6)
);
then
=> Only valid for nottry
macros. Will be executed in any case, act ashandler(result0, result1, ..)
assert_eq!(
join! {
Some(1),
Some(2),
Some(3),
then => |a: Option<u8>, b: Option<u8>, c: Option<u8>|
Some(a.unwrap() + b.unwrap() + c.unwrap())
},
Some(6)
);
or not specified - then Result<(result0, result1, ..), Error>
or Option<(result0, result1, ..)>
will be returned for try
macros and (result0, result1, ..)
for not try
macros.
You can specify any params at the beginning of macro call.
futures_crate_path
- specifies custom crate path forfutures
crate, which will be used for allfutures
-related items, used byasync
join!
macros. Only valid forasync
macros.custom_joiner
- specifies custom joiner function or macro, which will join active branches in step if their count is greater than 1.transpose_results
- specifies should macro transpose tuple ofResult
s/Option
s intoResult
/Option
of tuple or not. Useful when provided joiner already returnsResult
of tuple and there's no need to transpose it.lazy_branches
- wrap every branch intomove || {}
when pass values to joiner. By defaulttrue
fortry_join_spawn!
,try_spawn!
andjoin_spawn!
,spawn!
macros because they usethread::spawn
call. Only if active branch count > 1.
use join::try_join_async;
use futures::future::ok;
macro_rules! custom_futures_joiner {
($($futures: expr),+) => {
::futures::try_join!($($futures),*);
}
}
#[tokio::main]
async fn main() {
let value = try_join_async! {
futures_crate_path(::futures)
custom_joiner(custom_futures_joiner!)
transpose_results(false)
ok::<_,()>(2u16), ok::<_,()>(3u16),
map => |a, b| a + b
}.await.unwrap();
assert_eq!(value, 5);
}
Rayon demo
use join::{try_join, join};
fn fib(num: u8) -> usize {
let mut prev = 0;
let mut cur = if num > 0 { 1 } else { 0 };
for _ in 1..num as usize {
let tmp = cur;
cur = prev + cur;
prev = tmp;
}
cur
}
fn main() {
let pool = rayon::ThreadPoolBuilder::new().build().unwrap();
let calculated = pool.install(||
try_join! {
custom_joiner(rayon::join)
|| Some(fib(50)),
|| Some(
join! {
custom_joiner(rayon::join)
lazy_branches(true)
fib(20) -> |v| v + 25,
fib(30) -> |v| vec![v; 10].into_iter() |n> |> |(index, value)| value + index ..sum::<usize>(),
then => |a, b| a + b
}
),
map => |a, b| a * b
}
);
assert_eq!(calculated.unwrap(), 104808819944395875);
}
You can specify let
pattern for each branch in order to share result with other branches, or in case if you need to have mut
value between steps.
assert_eq!(
try_join! {
let mut branch_0 = Ok::<_,()>(1) ~|> |v| v + 1,
let branch_1 = Ok::<_,()>(2) ~|> { let value_0 = branch_0.as_ref().unwrap(); move |v| v + value_0 },
map => |b_0, b_1| b_0 * b_1
}.unwrap(),
6
);
In order to capture variables (for ex. values of other branches in example above) you can pass block statements instead of functions:
let mut some_value = Some("capture me");
assert_eq!(try_join! {
Some(0) |> |v| {
// assign `None` to some_value in step expr
some_value = None;
v
} |> {
// capture value before step and get str len
let captured_len = some_value.as_ref().unwrap().len();
move |v| v + captured_len
}
}.unwrap(), 10);
These blocks will be placed before actual step expressions.
Using this macro you can write things like
use rand::prelude::*;
use std::sync::Arc;
use join::try_join_spawn;
// Problem: generate vecs filled by random numbers in parallel, make some operations on them in parallel,
// find max of each vec in parallel and find final max of 3 vecs
// Solution:
fn main() {
// Branches will be executed in parallel, each in its own thread
let max = try_join_spawn! {
let branch_0 =
generate_random_vec(1000, 10000000u64)
.into_iter()
// .map(power2) (Multiply every element by itself)
|> power2
// .filter(is_even) (Filter even values)
?> is_even
// .collect::<Vec<_>>() (Collect values into `Vec<_>`)
=>[] Vec<_>
// Arc::new(Some(...))
// Use `Arc` to share data with branch 1
-> Arc::new -> Some
// Find max and clone its value
// .and_then(|v| v.iter().max().cloned())
~=> >>> ..iter().max() |> Clone::clone,
generate_random_vec(10000, 100000000000000f64)
.into_iter()
// .map(sqrt) (Extract sqrt from every element)
|> sqrt
// Some(...)
-> Some
// .and_then(|v| v...)
~=> >>>
// .enumerate() (Add index in order to compare with the values of branch_0)
|n>
// .map(...)
|> {
// Get data from branch 0 by cloning arc
let branch_0 = branch_0.as_ref().unwrap().clone();
let len = branch_0.len();
// Compare every element of branch 1 with element of branch_0
// with the same index and take min
move |(index, value)|
if index < len && value as u64 > branch_0[index] {
branch_0[index]
} else {
value as u64
}
}..max(),
generate_random_vec(100000, 100000u32)
.into_iter()
-> Some
// .and_then(|v| v.max())
~=> >>> ..max(),
and_then => |max0, max1, max2|
// Find final max
[max0, max1, max2 as u64].iter().max().cloned()
}
.unwrap();
println!("Max: {}", max);
}
fn generate_random_vec<T>(size: usize, max: T) -> Vec<T>
where
T: From<u8>
+ rand::distributions::uniform::SampleUniform
+ rand::distributions::uniform::SampleBorrow<T>
+ Copy,
{
let mut rng = rand::thread_rng();
(0..size)
.map(|_| rng.gen_range(T::from(0u8), max))
.collect()
}
fn is_even<T>(value: &T) -> bool
where
T: std::ops::Rem<Output = T> + std::cmp::PartialEq + From<u8> + Copy
{
*value % 2u8.into() == 0u8.into()
}
fn sqrt<T>(value: T) -> T
where
T: Into<f64>,
f64: Into<T>,
{
let value_f64: f64 = value.into();
value_f64.sqrt().into()
}
fn power2<T>(value: T) -> T
where
T: std::ops::Mul<Output = T> + Copy,
{
value * value
}
extern crate rand;
extern crate join;
use rand::prelude::*;
use join::try_join;
fn main() {
let mut rng = rand::thread_rng();
let result = try_join! {
(0..10)
// .map(|index| { let value ... })
|> |index| { let value = rng.gen_range(0, index + 5); if rng.gen_range(0f32, 2.0) > 1.0 { Ok(value) } else { Err(value) }}
// .filter(|result| ...)
?> |result| match result { Ok(_) => true, Err(value) => *value > 2 }
// .map(|v| v.map(|value| value + 1))
|> >>> |> |value| value + 1
<<<
// .try_fold(0i32, |acc, cur| {...})
?^@ 0i32, |acc, cur| {
cur.map(|cur| acc + cur).or_else(|cur| Ok(acc - cur))
}
// .and_then(|value| if ...)
=> |value| if value > 0 { Ok(value as u8) } else { Err(0) }
// Wait for all branches to be successful and then calculate fib
~|> fib,
(0..6)
// .map(|index| { let value ... })
|> |index| { let value = rng.gen_range(0, index + 5); if rng.gen_range(0f32, 2.0) > 1.0 { Some(value) } else { None }}
// .filter_map(|v| v)
?|> >>>
<<<
..sum::<u16>()
// Return `Ok` only if value is less than 20
-> |value| if value < 20 { Ok(value as u8) } else { Err(0) }
// Wait for all branches to be successful and then calculate fib
~|> fib,
// In case of success, multilpy fibs
map => |v_1, v_2| v_1 * v_2
};
result.map(|value| println!("Result: {}", value)).unwrap_or_else(|err| println!("Error: {:#?}", err));
}
fn fib(num: u8) -> usize {
println!("CALLED FIB!");
let mut prev = 0;
let mut cur = if num > 0 { 1 } else { 0 };
for _ in 1..num as usize {
let tmp = cur;
cur = prev + cur;
prev = tmp;
}
cur
}
use join::try_join_async;
use futures::stream::{iter, Stream};
use reqwest::Client;
use futures::future::{try_join_all, ok, ready};
use failure::{format_err, Error};
#[tokio::main]
async fn main() {
println!("Hello.\nThis's is the game where winner is player, which number is closest to the max count of links (starting with `https://`) found on one of random pages.\nYou play against random generator (0-500).");
enum GameResult {
Won,
Lost,
Draw
}
let client = Client::new();
let game = try_join_async! {
// Make requests to several sites
// and calculate count of links starting from `https://`
urls_to_calculate_link_count()
|> {
// If pass block statement instead of fn, it will be placed before current step,
// so it will us allow to capture some variables from context
let ref client = client;
move |url|
// `try_join_async!` wraps its content into `Box::pin(async move { })`
try_join_async! {
client
.get(url).send()
=> |value| value.text()
=> |body| ok((url, body.matches("https://").collect::<Vec<_>>().len()))
}
}
// Collect values into `Vec<_>`
=>[] Vec<_>
|> Ok
=> try_join_all
!> |err| format_err!("Error retrieving pages to calculate links: {:#?}", err)
=> >>>
..into_iter()
.max_by_key(|(_, link_count)| *link_count)
.ok_or(format_err!("Failed to find max link count"))
-> ready
// It waits for input in stdin before log max links count
~?? >>>
..as_ref()
|> |(url, count)| {
let split = url.to_owned().split('/').collect::<Vec<_>>();
let domain_name = split.get(2).unwrap_or(&url);
println!("Max `https://` link count found on `{}`: {}", domain_name, count)
}
..unwrap_or(()),
// Concurrently it makes request to the site which generates random number
url_to_random_number()
-> ok
=> {
// If pass block statement instead of fn, it will be placed before current step,
// so it will allow us to capture some variables from context
let ref client = client;
let map_parse_error = |error, value| format_err!("Failed to parse random number: {:#?}, value: {}", error, value);
move |url|
try_join_async! {
client
.get(url)
.send()
=> |value| value.text()
!> |err| format_err!("Error retrieving random number: {:#?}", err)
=> |value| ok(value[..value.len() - 1].to_owned()) // remove \n from `154\n`
=> |value|
ready(
value
.parse::<u16>()
.map_err(|err| map_parse_error(err, value))
)
}
}
// It waits for input in stdin before log random value
~?? >>>
..as_ref()
|> |number| println!("Random: {}", number)
..unwrap_or(()),
// Concurrently it reads value from stdin
read_number_from_stdin() |> Ok,
// Finally, when we will have all results, we can decide, who is winner
map => |(_url, link_count), random_number, number_from_stdin| {
let random_diff = (link_count as i32 - random_number as i32).abs();
let stdin_diff = (link_count as i32 - number_from_stdin as i32).abs();
match () {
_ if random_diff > stdin_diff => GameResult::Won,
_ if random_diff < stdin_diff => GameResult::Lost,
_ => GameResult::Draw
}
}
};
let _ = game.await.map(
|result|
println!(
"You {}",
match result {
GameResult::Won => "won!",
GameResult::Lost => "lose...",
_ => "have the same result as random generator!"
}
)
).unwrap_or_else(|error| eprintln!("Error: {:#?}", error));
}
fn urls_to_calculate_link_count() -> impl Stream<Item = &'static str> {
iter(
vec![
"https://en.wikipedia.org/w/api.php?format=json&action=query&generator=random&grnnamespace=0&prop=revisions|images&rvprop=content&grnlimit=100",
"https://github.com/explore",
"https://twitter.com/search?f=tweets&vertical=news&q=%23news&src=unkn"
]
)
}
fn url_to_random_number() -> &'static str {
"https://www.random.org/integers/?num=1&min=0&max=500&col=1&base=10&format=plain&rnd=new"
}
async fn read_number_from_stdin() -> u16 {
use tokio::io::{stdin, BufReader, Error, ErrorKind, AsyncBufReadExt};
let mut reader = BufReader::new(stdin()).lines();
loop {
println!("Please, enter number (`u16`)");
let next = reader.next_line();
let result = try_join_async! {
next
=> >>>
..ok_or(Error::new(ErrorKind::Other, "Failed to read value from stdin"))
=> >>>
..parse()
!> |err| Error::new(ErrorKind::Other, format!("Value from stdin isn't a correct `u16`: {:?}", err))
<<<
-> ready
}.await;
if let Ok(value) = result {
break value
}
}
}
Converts input in series of chained results and joins them step by step.
use std::error::Error;
use join::try_join;
type Result<T> = std::result::Result<T, Box<dyn Error>>;
fn action_1() -> Result<u16> {
Ok(1)
}
fn action_2() -> Result<u8> {
Ok(2)
}
fn main() {
let sum = try_join! {
// action_1(),
action_1(),
// action_2().map(|v| v as u16),
action_2() |> |v| v as u16,
// action_2().map(|v| v as u16 + 1).and_then(|v| Ok(v * 4)),
action_2() |> |v| v as u16 + 1 => |v| Ok(v * 4),
// action_1().and_then(|_| Err("5".into())).or(Ok(2)),
action_1() => |_| Err("5".into()) <| Ok(2),
map => |a, b, c, d| a + b + c + d
}.expect("Failed to calculate sum");
println!("Calculated: {}", sum);
}
Each branch will represent future chain. All branches will be joined using ::futures::join!
/::futures::try_join!
macro and join_async!
/try_join_async!
will return unpolled
future.
use std::error::Error;
use join::try_join_async;
use futures::future::{ok, err};
type Result<T> = std::result::Result<T, Box<dyn Error>>;
async fn action_1() -> Result<u16> {
Ok(1)
}
async fn action_2() -> Result<u8> {
Ok(2)
}
#[tokio::main]
async fn main() {
let sum = try_join_async! {
// action_1(),
action_1(),
// action_2().and_then(|v| ok(v as u16)),
action_2() => |v| ok(v as u16),
// action_2().map(|v| v.map(|v| v as u16 + 1)).and_then(|v| ok(v * 4u16)),
action_2() |> |v| v.map(|v| v as u16 + 1) => |v| ok(v * 4u16),
// action_1().and_then(|_| err("5".into())).or_else(|_| ok(2u16)),
action_1() => |_| err("5".into()) <= |_| ok(2u16),
and_then => |a, b, c, d| ok(a + b + c + d)
}.await.expect("Failed to calculate sum");
println!("Calculated: {}", sum);
}
To execute several tasks in parallel you could use join_spawn!
(spawn!
) for sync tasks
and join_async_spawn!
(async_spawn!
) for futures. Since join_async
already provides concurrent futures execution in one thread, join_async_spawn!
spawns every branch into tokio
executor, so they will be evaluated in multi threaded executor.
join_spawn
spawns one ::std::thread
per each step of each branch (number of branches is the max thread count at the time).
use std::error::Error;
use join::try_join_spawn;
type Result<T> = std::result::Result<T, Box<dyn Error + Send + Sync>>;
fn action_1() -> Result<usize> {
Ok(1)
}
fn action_2() -> Result<u16> {
Ok(2)
}
fn main() {
// Branches will be executed in parallel
let sum = try_join_spawn! {
// thread::spawn(move || action_1()),
action_1(),
// thread::spawn(move || action_2().map(|v| v as usize)),
action_2() |> |v| v as usize,
// thread::spawn(move || action_2().map(|v| v as usize + 1).and_then(|v| Ok(v * 4))),
action_2() |> |v| v as usize + 1 => |v| Ok(v * 4),
// thread::spawn(move || action_1().and_then(|_| Err("5".into())).or(Ok(2))),
action_1() => |_| Err("5".into()) <| Ok(2),
map => |a, b, c, d| a + b + c + d
}.expect("Failed to calculate sum");
println!("Calculated: {}", sum);
}
Thread names
In runtime thread's name will be constructed from name of parent thread and join_%branch_index%.
Example with several branches:
extern crate join;
use std::thread;
use join::try_join_spawn;
fn current_thread_name() -> String {
thread::current().name().unwrap().to_owned()
}
fn print_branch_thread_name(index: &Result<usize, ()>) {
println!("Branch: {}. Thread name: {}.", index.unwrap(), current_thread_name());
}
fn main() {
let _ = try_join_spawn! {
Ok(0) ?? print_branch_thread_name,
Ok(1) ?? print_branch_thread_name,
try_join_spawn! {
Ok(2) ?? print_branch_thread_name,
try_join_spawn! {
Ok(3) ?? print_branch_thread_name,
}
}
}.unwrap();
}
// Branch: 0. Thread name: main_join_0.
// Branch: 1. Thread name: main_join_1.
// Branch: 2. Thread name: main_join_2_join_0.
// Branch: 3. Thread name: main_join_2_join_1_join_0.
// Order could be different.
join_async_spawn!
uses ::tokio::spawn
function to spawn tasks so it should be done inside tokio
runtime
(number of branches is the max count of tokio
tasks at the time).
use std::error::Error;
use join::try_join_async_spawn;
use futures::future::{ok, err};
type Result<T> = std::result::Result<T, Box<dyn Error + Send + Sync>>;
async fn action_1() -> Result<u16> {
Ok(1)
}
async fn action_2() -> Result<u8> {
Ok(2)
}
#[tokio::main]
async fn main() {
let sum = try_join_async_spawn! {
// tokio::spawn(Box::pin(action_1()))
action_1(),
// tokio::spawn(Box::pin(action_2().and_then(|v| ok(v as u16))))
action_2() => |v| ok(v as u16),
// tokio::spawn(Box::pin(action_2().map(|v| v.map(|v| v as u16 + 1)).and_then(|v| ok(v * 4u16))))
action_2() |> |v| v.map(|v| v as u16 + 1) => |v| ok(v * 4u16),
// tokio::spawn(Box::pin(action_1().and_then(|_| err("5".into())).or_else(|_| ok(2u16))))
action_1() => |_| err("5".into()) <= |_| ok(2u16),
and_then => |a, b, c, d| ok(a + b + c + d)
}.await.expect("Failed to calculate sum");
println!("Calculated: {}", sum);
}
By separating chain in actions, you will make actions wait for completion of all of them in current step before go to the next step.
use std::error::Error;
use join::try_join;
type Result<T> = std::result::Result<T, Box<dyn Error + Send + Sync>>;
fn action_1() -> Result<u16> {
Ok(1)
}
fn action_2() -> Result<u8> {
Ok(2)
}
fn main() {
let sum = try_join! {
action_1(),
let result_1 = action_2() ~|> |v| v as u16 + 1,
action_2() ~|> {
// `result_1` now is the result of `action_2()` [Ok(1u8)]
let result_1 = result_1.as_ref().ok().cloned();
move |v| {
if result_1.is_some() {
v as u16 + 1
} else {
unreachable!()
}
}
} ~=> {
// `result_1` now is the result of `|v| v as u16 + 1` [Ok(2u16)]
let result_1 = result_1.as_ref().ok().cloned();
move |v| {
if let Some(result_1) = result_1 {
Ok(v * 4 + result_1)
} else {
unreachable!()
}
}
},
action_1() ~=> |_| Err("5".into()) <| Ok(2),
map => |a, b, c, d| a + b + c + d
}.expect("Failed to calculate sum");
println!("Calculated: {}", sum);
}