Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add monkey-chat #54

Merged
merged 2 commits into from
Jan 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions vlmeval/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@
'emu2':partial(Emu, name='emu2'),
'emu2_chat':partial(Emu, name='emu2_chat'),
'monkey':partial(Monkey, model_path='echo840/Monkey'),
'monkey-chat':partial(MonkeyChat, model_path='echo840/Monkey-Chat'),
}

api_models = {
Expand Down
2 changes: 1 addition & 1 deletion vlmeval/vlm/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,4 +16,4 @@
from .cogvlm import CogVlm
from .sharedcaptioner import SharedCaptioner
from .emu import Emu
from .monkey import Monkey
from .monkey import Monkey, MonkeyChat
46 changes: 45 additions & 1 deletion vlmeval/vlm/monkey.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def __init__(self, model_path='echo840/Monkey', **kwargs):
torch.cuda.empty_cache()

def generate(self, image_path, prompt, dataset=None):
cur_prompt = f'<img>{image_path}</img>\n{prompt} Answer:'
cur_prompt = f'<img>{image_path}</img> {prompt} Answer:'
input_ids = self.tokenizer(cur_prompt, return_tensors='pt', padding='longest')
attention_mask = input_ids.attention_mask
input_ids = input_ids.input_ids
Expand All @@ -44,3 +44,47 @@ def generate(self, image_path, prompt, dataset=None):
response = self.tokenizer.decode(output_ids[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()

return response

class MonkeyChat:

INSTALL_REQ = False

def __init__(self, model_path='echo840/Monkey-Chat', **kwargs):
assert model_path is not None
self.model_path = model_path
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
self.model = AutoModelForCausalLM.from_pretrained(model_path, device_map='cuda', trust_remote_code=True).eval()
self.kwargs = kwargs

self.tokenizer.padding_side = 'left'
self.tokenizer.pad_token_id = self.tokenizer.eod_id

warnings.warn(f"Following kwargs received: {self.kwargs}, will use as generation config. ")
torch.cuda.empty_cache()

def generate(self, image_path, prompt, dataset=None):
if dataset == 'MMVet':
cur_prompt = f'<img>{image_path}</img> {prompt} Answer: '
else:
cur_prompt = f'<img>{image_path}</img> \n {prompt} Answer: '
input_ids = self.tokenizer(cur_prompt, return_tensors='pt', padding='longest')
attention_mask = input_ids.attention_mask
input_ids = input_ids.input_ids

output_ids = self.model.generate(
input_ids=input_ids.cuda(),
attention_mask=attention_mask.cuda(),
do_sample=False,
num_beams=1,
max_new_tokens=10,
min_new_tokens=1,
length_penalty=1,
num_return_sequences=1,
output_hidden_states=True,
use_cache=True,
pad_token_id=self.tokenizer.eod_id,
eos_token_id=self.tokenizer.eod_id,
)
response = self.tokenizer.decode(output_ids[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()

return response