Skip to content

Commit

Permalink
[Feature] Support ControlNet (#1744)
Browse files Browse the repository at this point in the history
* support ControlNet model

* support ControlNet and corresponding README

* revise year in readme

* revise convert base model's unit test
  • Loading branch information
LeoXing1996 authored Apr 6, 2023
1 parent 082b940 commit 0766b37
Show file tree
Hide file tree
Showing 13 changed files with 1,159 additions and 6 deletions.
195 changes: 195 additions & 0 deletions configs/controlnet/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
# Control Net (2023)

> [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543)
> **Task**: Text2Image
<!-- [ALGORITHM] -->

## Abstract

<!-- [ABSTRACT] -->

We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (\< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.

<!-- [IMAGE] -->

<div align=center>
<img src="https://user-images.githubusercontent.com/28132635/230302421-a9107d03-92d3-44b1-91b4-fde4ad2725d4.png">
</div>

## Pretrained models

We use ControlNet's weights provided by HuggingFace Diffusers. You do not have to download the weights manually. If you use Diffusers wrapper, the weights will be downloaded automatically.

This model has several weights including vae, unet and clip. You should download the weights from [stable-diffusion-1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) and change the 'pretrained_model_path' in config to the weights dir.

| Model | Dataset | Download |
| :---------------------------------------------: | :-----: | :----------------------------------------------------------------------------------------------: |
| [ControlNet-Canny](./controlnet-canny.py) | - | [model](https://huggingface.co/lllyasviel/ControlNet/blob/main/models/control_sd15_canny.pth) |
| [ControlNet-Segmentation](./controlnet-seg.py) | - | [model](https://huggingface.co/lllyasviel/ControlNet/blob/main/models/control_sd15_seg.pth) |
| [ControlNet-Pose](./controlnet-pose.py) | - | [model](https://huggingface.co/lllyasviel/ControlNet/blob/main/models/control_sd15_openpose.pth) |
| [ControlNet-Demo](./controlnet-1xb1-fill50k.py) | - | - |

Noted that, [ControlNet-Demo](./controlnet-1xb1-demo_dataset.py) is a demo config to train ControlNet with toy dataset named Fill50K.

Besides above configs, ControlNet have weight with other condition inputs, such as [depth](https://huggingface.co/lllyasviel/ControlNet/blob/main/models/control_sd15_depth.pth), [hed](https://huggingface.co/lllyasviel/ControlNet/blob/main/models/control_sd15_hed.pth), [mlsd](https://huggingface.co/lllyasviel/ControlNet/blob/main/models/control_sd15_mlsd.pth), [normal](https://huggingface.co/lllyasviel/ControlNet/blob/main/models/control_sd15_normal.pth), [scribble](https://huggingface.co/lllyasviel/ControlNet/blob/main/models/control_sd15_scribble.pth). You can simple change the `from_pretrained` field of ControlNet to use these weights. For example:

```python
# Switch from canny....
controlnet=dict(
type='ControlNetModel',
from_pretrained='lllyasviel/sd-controlnet-canny')

# To normal....
controlnet=dict(
type='ControlNetModel',
from_pretrained='lllyasviel/sd-controlnet-normal')
```

## Quick Start

Running the following codes, you can get a text-generated image.

```python
import mmcv
from mmengine import Config
from PIL import Image

from mmedit.registry import MODELS
from mmedit.utils import register_all_modules

register_all_modules()

cfg = Config.fromfile('configs/controlnet/controlnet_canny.py')
controlnet = MODELS.build(cfg.model).cuda()

prompt = 'Room with blue walls and a yellow ceiling.'
control_url = 'https://user-images.githubusercontent.com/28132635/230288866-99603172-04cb-47b3-8adb-d1aa532d1d2c.jpg'
control_img = mmcv.imread(control_url)
control = cv2.Canny(control_img, 100, 200)
control = control[:, :, None]
control = np.concatenate([control] * 3, axis=2)
control = Image.fromarray(control)

output_dict = controlnet.infer(prompt, control=control)
samples = output_dict['samples']
for idx, sample in enumerate(samples):
sample.save(f'sample_{idx}.png')
controls = output_dict['controls']
for idx, control in enumerate(controls):
control.save(f'control_{idx}.png')
```

<table align="center">
<thead>
<tr>
<td>
<div align="center">
<img src="https://user-images.githubusercontent.com/28132635/230297033-4f5c32df-365c-4cf4-8e4f-1b76a4cbb0b7.png" width="400"/>
<br/>
<b>'control_0.png'</b>
</div></td>
<td>
<div align="center">
<img src="https://user-images.githubusercontent.com/28132635/230298159-a25695f8-fee4-40b2-aec0-01566ab25a97.png" width="400"/>
<br/>
<b>'sample_0.png'</b>
</div></td>
<td>
</thead>
</table>

If you want to pretrained weights rather than original Stable-Diffusion v1.5, you can refers to the following codes.

```python
import mmcv
from mmengine import Config
from PIL import Image

from mmedit.registry import MODELS
from mmedit.utils import register_all_modules

register_all_modules()

cfg = Config.fromfile('configs/controlnet/controlnet_pose.py')
# convert ControlNet's weight from SD-v1.5 to Counterfeit-v2.5
cfg.model.unet.from_pretrained = 'gsdf/Counterfeit-V2.5'
cfg.model.vae.from_pretrained = 'gsdf/Counterfeit-V2.5'
cfg.model.init_cfg['type'] = 'convert_from_unet'

controlnet = MODELS.build(cfg.model).cuda()
# call init_weights manually to convert weight
controlnet.init_weights()

prompt = 'masterpiece, best quality, sky, black hair, skirt, sailor collar, looking at viewer, short hair, building, bangs, neckerchief, long sleeves, cloudy sky, power lines, shirt, cityscape, pleated skirt, scenery, blunt bangs, city, night, black sailor collar, closed mouth'

control_url = 'https://user-images.githubusercontent.com/28132635/230380893-2eae68af-d610-4f7f-aa68-c2f22c2abf7e.png'
control_img = mmcv.imread(control_url)
control = Image.fromarray(control_img)
control.save('control.png')

output_dict = controlnet.infer(prompt, control=control, width=512, height=512, guidance_scale=7.5)
samples = output_dict['samples']
for idx, sample in enumerate(samples):
sample.save(f'sample_{idx}.png')
controls = output_dict['controls']
for idx, control in enumerate(controls):
control.save(f'control_{idx}.png')
```

<table align="center">
<thead>
<tr>
<td>
<div align="center">
<img src="https://user-images.githubusercontent.com/28132635/230385313-92b20696-8bb5-4666-aa93-a8df6b19dee7.png" width="400"/>
<br/>
<b>'control_0.png'</b>
</div></td>
<td>
<div align="center">
<img src="https://user-images.githubusercontent.com/28132635/230385320-129493b6-aa1f-406f-9fd3-b08c8c04bd89.png" width="400"/>
<br/>
<b>'sample_0.png'</b>
</div></td>
<td>
</thead>
</table>

## Train your own ControlNet!

You can start training your own ControlNet with the toy dataset [Fill50K](https://huggingface.co/lllyasviel/ControlNet/blob/main/training/fill50k.zip) with the following command:

```bash
bash tools/dist_train.sh configs/controlnet/controlnet-1xb1-demo_dataset 1
```

If you want use gradient accumulation, you can add `accumulative_counts` field to the optimizer's config as follow:

```python
# From...
optim_wrapper = dict(controlnet=dict(optimizer=dict(type='AdamW', lr=1e-5)))
# To...
optim_wrapper = dict(
controlnet=dict(accumulative_counts=4, optimizer=dict(type='AdamW', lr=1e-5)))
```

## Comments

Our codebase for the stable diffusion models builds heavily on [diffusers codebase](https://github.com/huggingface/diffusers) and the model weights are from [stable-diffusion-1.5](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py) and [ControlNet](https://huggingface.co/lllyasviel/ControlNet/tree/main/models).

Thanks for the efforts of the community!

## Citation

```bibtex
@misc{zhang2023adding,
title={Adding Conditional Control to Text-to-Image Diffusion Models},
author={Lvmin Zhang and Maneesh Agrawala},
year={2023},
eprint={2302.05543},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
80 changes: 80 additions & 0 deletions configs/controlnet/controlnet-1xb1-fill50k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
_base_ = '../_base_/gen_default_runtime.py'

# config for model
stable_diffusion_v15_url = 'runwayml/stable-diffusion-v1-5'
controlnet_canny_url = 'lllyasviel/sd-controlnet-canny'

model = dict(
type='ControlStableDiffusion',
vae=dict(
type='AutoencoderKL',
from_pretrained=stable_diffusion_v15_url,
subfolder='vae'),
unet=dict(
type='UNet2DConditionModel',
subfolder='unet',
from_pretrained=stable_diffusion_v15_url),
text_encoder=dict(
type='ClipWrapper',
clip_type='huggingface',
pretrained_model_name_or_path=stable_diffusion_v15_url,
subfolder='text_encoder'),
tokenizer=stable_diffusion_v15_url,
controlnet=dict(
type='ControlNetModel',
# from_pretrained=controlnet_canny_rul
from_config=controlnet_canny_url # train from scratch
),
scheduler=dict(
type='DDPMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
test_scheduler=dict(
type='DDIMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
data_preprocessor=dict(type='EditDataPreprocessor'),
init_cfg=dict(type='init_from_unet'))

# config for training
train_cfg = dict(max_iters=10000)
optim_wrapper = dict(controlnet=dict(optimizer=dict(type='AdamW', lr=1e-5)))

# Config for data loader
pipeline = [
dict(type='LoadImageFromFile', key='source', channel_order='rgb'),
dict(type='LoadImageFromFile', key='target', channel_order='rgb'),
dict(
type='PackEditInputs',
keys=['source', 'target'],
data_keys='prompt',
meta_keys=[
'source_channel_order', 'source_color_type',
'target_channel_order', 'target_color_type'
])
]
dataset = dict(
type='ControlDataset',
data_root='./data/fill50k',
ann_file='prompt.json',
pipeline=pipeline)
train_dataloader = dict(
dataset=dataset,
num_workers=16,
sampler=dict(type='InfiniteSampler', shuffle=True),
persistent_workers=True,
batch_size=4)
val_cfg = val_evaluator = val_dataloader = None
test_cfg = test_evaluator = test_dataloader = None

# hooks
custom_hooks = [
dict(
type='GenVisualizationHook',
interval=300,
fixed_input=True,
# visualize train dataset
vis_kwargs_list=dict(type='Data', name='fake_img'),
n_samples=4,
n_row=2)
]
32 changes: 32 additions & 0 deletions configs/controlnet/controlnet-canny.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# config for model
stable_diffusion_v15_url = 'runwayml/stable-diffusion-v1-5'
controlnet_canny_url = 'lllyasviel/sd-controlnet-canny'

model = dict(
type='ControlStableDiffusion',
vae=dict(
type='AutoencoderKL',
from_pretrained=stable_diffusion_v15_url,
subfolder='vae'),
unet=dict(
type='UNet2DConditionModel',
subfolder='unet',
from_pretrained=stable_diffusion_v15_url),
text_encoder=dict(
type='ClipWrapper',
clip_type='huggingface',
pretrained_model_name_or_path=stable_diffusion_v15_url,
subfolder='text_encoder'),
tokenizer=stable_diffusion_v15_url,
controlnet=dict(
type='ControlNetModel', from_pretrained=controlnet_canny_url),
scheduler=dict(
type='DDPMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
test_scheduler=dict(
type='DDIMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
data_preprocessor=dict(type='EditDataPreprocessor'),
init_cfg=dict(type='init_from_unet'))
32 changes: 32 additions & 0 deletions configs/controlnet/controlnet-pose.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# config for model
stable_diffusion_v15_url = 'runwayml/stable-diffusion-v1-5'
controlnet_canny_url = 'lllyasviel/sd-controlnet-openpose'

model = dict(
type='ControlStableDiffusion',
vae=dict(
type='AutoencoderKL',
from_pretrained=stable_diffusion_v15_url,
subfolder='vae'),
unet=dict(
type='UNet2DConditionModel',
subfolder='unet',
from_pretrained=stable_diffusion_v15_url),
text_encoder=dict(
type='ClipWrapper',
clip_type='huggingface',
pretrained_model_name_or_path=stable_diffusion_v15_url,
subfolder='text_encoder'),
tokenizer=stable_diffusion_v15_url,
controlnet=dict(
type='ControlNetModel', from_pretrained=controlnet_canny_url),
scheduler=dict(
type='DDPMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
test_scheduler=dict(
type='DDIMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
data_preprocessor=dict(type='EditDataPreprocessor'),
init_cfg=dict(type='init_from_unet'))
32 changes: 32 additions & 0 deletions configs/controlnet/controlnet-seg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# config for model
stable_diffusion_v15_url = 'runwayml/stable-diffusion-v1-5'
controlnet_canny_url = 'lllyasviel/sd-controlnet-seg'

model = dict(
type='ControlStableDiffusion',
vae=dict(
type='AutoencoderKL',
from_pretrained=stable_diffusion_v15_url,
subfolder='vae'),
unet=dict(
type='UNet2DConditionModel',
subfolder='unet',
from_pretrained=stable_diffusion_v15_url),
text_encoder=dict(
type='ClipWrapper',
clip_type='huggingface',
pretrained_model_name_or_path=stable_diffusion_v15_url,
subfolder='text_encoder'),
tokenizer=stable_diffusion_v15_url,
controlnet=dict(
type='ControlNetModel', from_pretrained=controlnet_canny_url),
scheduler=dict(
type='DDPMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
test_scheduler=dict(
type='DDIMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
data_preprocessor=dict(type='EditDataPreprocessor'),
init_cfg=dict(type='init_from_unet'))
Loading

0 comments on commit 0766b37

Please sign in to comment.