-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Add TDAN config and models (#347)
* Add TDAN config and models * Add training and test descriptions * Update readme descrptions * Update README
- Loading branch information
1 parent
290c75e
commit 085a277
Showing
7 changed files
with
577 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
# TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution | ||
|
||
## Introduction | ||
|
||
<!-- [ALGORITHM] --> | ||
|
||
```bibtex | ||
@InProceedings{tian2020tdan, | ||
title={TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution}, | ||
author={Tian, Yapeng and Zhang, Yulun and Fu, Yun and Xu, Chenliang}, | ||
booktitle = {Proceedings of the IEEE conference on Computer Vision and Pattern Recognition}, | ||
year = {2020} | ||
} | ||
``` | ||
|
||
## Results and Models | ||
|
||
Evaluated on Y-channel. 8 pixels in each border are cropped before evaluation. | ||
|
||
The metrics are `PSNR / SSIM`. | ||
|
||
| Method | Vid4 (BIx4) | SPMCS-30 (BIx4) | Vid4 (BDx4) | SPMCS-30 (BDx4) | Download | | ||
|:-------------------------------------------------------------------:|:---------------:|:---------------:|:---------------:|:---------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | ||
| [tdan_vimeo90k_bix4](/configs/restorers/tdan/tdan_vimeo90k_bix4.py) | **26.49/0.792** | **30.42/0.856** | 25.93/0.772 | 29.69/0.842 | [model](https://download.openmmlab.com/mmediting/restorers/tdan/tdan_vimeo90k_bix4_20210528-739979d9.pth) \| [log](https://download.openmmlab.com/mmediting/restorers/tdan/tdan_vimeo90k_bix4_20210528_135616.log.json) | | ||
| [tdan_vimeo90k_bdx4](/configs/restorers/tdan/tdan_vimeo90k_bdx4.py) | 25.80/0.784 | 29.56/0.851 | **26.87/0.815** | **30.77/0.868** | [model](https://download.openmmlab.com/mmediting/restorers/tdan/tdan_vimeo90k_bdx4_20210528-c53ab844.pth) \| [log](https://download.openmmlab.com/mmediting/restorers/tdan/tdan_vimeo90k_bdx4_20210528_122401.log.json) | | ||
|
||
|
||
## Train | ||
|
||
You can use the following command to train a model. | ||
|
||
```shell | ||
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments] | ||
``` | ||
|
||
TDAN is trained with two stages. | ||
|
||
**Stage 1**: Train with a larger learning rate (1e-4) | ||
|
||
|
||
```shell | ||
./tools/dist_train.sh configs/restorers/tdan/tdan_vimeo90k_bix4_lr1e-4_400k.py 8 | ||
``` | ||
|
||
**Stage 2**: Fine-tune with a smaller learning rate (5e-5) | ||
|
||
```shell | ||
./tools/dist_train.sh configs/restorers/tdan/tdan_vimeo90k_bix4_ft_lr5e-5_400k.py 8 | ||
``` | ||
|
||
For more details, you can refer to **Train a model** part in [getting_started](/docs/getting_started.md#train-a-model). | ||
|
||
## Test | ||
|
||
You can use the following command to test a model. | ||
|
||
```shell | ||
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--save-path ${IMAGE_SAVE_PATH}] | ||
``` | ||
|
||
Example: Test TDAN on SPMCS-30 using Bicubic downsampling. | ||
|
||
```shell | ||
python tools/test.py configs/restorers/tdan/tdan_vimeo90k_bix4_ft_lr5e-5_400k.py checkpoints/SOME_CHECKPOINT.pth --save_path outputs/ | ||
``` | ||
|
||
For more details, you can refer to **Inference with pretrained models** part in [getting_started](/docs/getting_started.md#inference-with-pretrained-models). |
127 changes: 127 additions & 0 deletions
127
configs/restorers/tdan/tdan_vimeo90k_bdx4_ft_lr5e-5_800k.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
exp_name = 'tdan_vimeo90k_bdx4_ft_lr5e-5_800k' | ||
|
||
# model settings | ||
model = dict( | ||
type='TDAN', | ||
generator=dict(type='TDANNet'), | ||
pixel_loss=dict(type='MSELoss', loss_weight=1.0, reduction='mean'), | ||
lq_pixel_loss=dict(type='MSELoss', loss_weight=0.01, reduction='mean')) | ||
# model training and testing settings | ||
train_cfg = None | ||
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=8, convert_to='y') | ||
|
||
# dataset settings | ||
train_dataset_type = 'SRVimeo90KDataset' | ||
val_dataset_type = 'SRVid4Dataset' | ||
|
||
train_pipeline = [ | ||
dict( | ||
type='LoadImageFromFileList', | ||
io_backend='disk', | ||
key='lq', | ||
channel_order='rgb'), | ||
dict( | ||
type='LoadImageFromFileList', | ||
io_backend='disk', | ||
key='gt', | ||
channel_order='rgb'), | ||
dict(type='RescaleToZeroOne', keys=['lq', 'gt']), | ||
dict( | ||
type='Normalize', | ||
keys=['lq', 'gt'], | ||
mean=[0.5, 0.5, 0.5], | ||
std=[1, 1, 1]), | ||
dict(type='PairedRandomCrop', gt_patch_size=192), | ||
dict( | ||
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, | ||
direction='horizontal'), | ||
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'), | ||
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5), | ||
dict(type='FramesToTensor', keys=['lq', 'gt']), | ||
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']) | ||
] | ||
|
||
val_pipeline = [ | ||
dict(type='GenerateFrameIndiceswithPadding', padding='reflection'), | ||
dict( | ||
type='LoadImageFromFileList', | ||
io_backend='disk', | ||
key='lq', | ||
channel_order='rgb'), | ||
dict( | ||
type='LoadImageFromFileList', | ||
io_backend='disk', | ||
key='gt', | ||
channel_order='rgb'), | ||
dict(type='RescaleToZeroOne', keys=['lq', 'gt']), | ||
dict( | ||
type='Normalize', | ||
keys=['lq', 'gt'], | ||
mean=[0.5, 0.5, 0.5], | ||
std=[1, 1, 1]), | ||
dict(type='FramesToTensor', keys=['lq', 'gt']), | ||
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']) | ||
] | ||
|
||
data = dict( | ||
workers_per_gpu=8, | ||
train_dataloader=dict(samples_per_gpu=16, drop_last=True), # 8 gpus | ||
val_dataloader=dict(samples_per_gpu=1), | ||
test_dataloader=dict(samples_per_gpu=1), | ||
train=dict( | ||
type='RepeatDataset', | ||
times=1000, | ||
dataset=dict( | ||
type=train_dataset_type, | ||
lq_folder='data/Vimeo-90K/BDx4', | ||
gt_folder='data/Vimeo-90K/GT', | ||
ann_file='data/Vimeo-90K/meta_info_Vimeo90K_train_GT.txt', | ||
num_input_frames=5, | ||
pipeline=train_pipeline, | ||
scale=4, | ||
test_mode=False)), | ||
val=dict( | ||
type=val_dataset_type, | ||
lq_folder='data/Vid4/BDx4', | ||
gt_folder='data/Vid4/GT', | ||
pipeline=val_pipeline, | ||
ann_file='data/Vid4/meta_info_Vid4_GT.txt', | ||
scale=4, | ||
num_input_frames=5, | ||
test_mode=True), | ||
test=dict( | ||
type=val_dataset_type, | ||
lq_folder='data/SPMCS/BDx4', | ||
gt_folder='data/SPMCS/GT', | ||
pipeline=val_pipeline, | ||
ann_file='data/SPMCS/meta_info_SPMCS_GT.txt', | ||
scale=4, | ||
num_input_frames=5, | ||
test_mode=True), | ||
) | ||
|
||
# optimizer | ||
optimizers = dict(generator=dict(type='Adam', lr=5e-5)) | ||
|
||
# learning policy | ||
total_iters = 800000 | ||
lr_config = dict(policy='Step', by_epoch=False, step=[800000], gamma=0.5) | ||
|
||
checkpoint_config = dict(interval=50000, save_optimizer=True, by_epoch=False) | ||
# remove gpu_collect=True in non distributed training | ||
evaluation = dict(interval=50000, save_image=False, gpu_collect=True) | ||
log_config = dict( | ||
interval=100, | ||
hooks=[ | ||
dict(type='TextLoggerHook', by_epoch=False), | ||
# dict(type='TensorboardLoggerHook'), | ||
]) | ||
visual_config = None | ||
|
||
# runtime settings | ||
dist_params = dict(backend='nccl') | ||
log_level = 'INFO' | ||
work_dir = f'./work_dirs/{exp_name}' | ||
load_from = './experiments/tdan_vimeo90k_bdx4_lr1e-4_400k/iter_400000.pth' | ||
resume_from = None | ||
workflow = [('train', 1)] |
127 changes: 127 additions & 0 deletions
127
configs/restorers/tdan/tdan_vimeo90k_bdx4_lr1e-4_400k.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
exp_name = 'tdan_vimeo90k_bdx4_lr1e-4_400k' | ||
|
||
# model settings | ||
model = dict( | ||
type='TDAN', | ||
generator=dict(type='TDANNet'), | ||
pixel_loss=dict(type='MSELoss', loss_weight=1.0, reduction='mean'), | ||
lq_pixel_loss=dict(type='MSELoss', loss_weight=0.01, reduction='mean')) | ||
# model training and testing settings | ||
train_cfg = None | ||
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=8, convert_to='y') | ||
|
||
# dataset settings | ||
train_dataset_type = 'SRVimeo90KDataset' | ||
val_dataset_type = 'SRVid4Dataset' | ||
|
||
train_pipeline = [ | ||
dict( | ||
type='LoadImageFromFileList', | ||
io_backend='disk', | ||
key='lq', | ||
channel_order='rgb'), | ||
dict( | ||
type='LoadImageFromFileList', | ||
io_backend='disk', | ||
key='gt', | ||
channel_order='rgb'), | ||
dict(type='RescaleToZeroOne', keys=['lq', 'gt']), | ||
dict( | ||
type='Normalize', | ||
keys=['lq', 'gt'], | ||
mean=[0.5, 0.5, 0.5], | ||
std=[1, 1, 1]), | ||
dict(type='PairedRandomCrop', gt_patch_size=192), | ||
dict( | ||
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, | ||
direction='horizontal'), | ||
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'), | ||
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5), | ||
dict(type='FramesToTensor', keys=['lq', 'gt']), | ||
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']) | ||
] | ||
|
||
val_pipeline = [ | ||
dict(type='GenerateFrameIndiceswithPadding', padding='reflection'), | ||
dict( | ||
type='LoadImageFromFileList', | ||
io_backend='disk', | ||
key='lq', | ||
channel_order='rgb'), | ||
dict( | ||
type='LoadImageFromFileList', | ||
io_backend='disk', | ||
key='gt', | ||
channel_order='rgb'), | ||
dict(type='RescaleToZeroOne', keys=['lq', 'gt']), | ||
dict( | ||
type='Normalize', | ||
keys=['lq', 'gt'], | ||
mean=[0.5, 0.5, 0.5], | ||
std=[1, 1, 1]), | ||
dict(type='FramesToTensor', keys=['lq', 'gt']), | ||
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path']) | ||
] | ||
|
||
data = dict( | ||
workers_per_gpu=8, | ||
train_dataloader=dict(samples_per_gpu=16, drop_last=True), # 8 gpus | ||
val_dataloader=dict(samples_per_gpu=1), | ||
test_dataloader=dict(samples_per_gpu=1), | ||
train=dict( | ||
type='RepeatDataset', | ||
times=1000, | ||
dataset=dict( | ||
type=train_dataset_type, | ||
lq_folder='data/Vimeo-90K/BDx4', | ||
gt_folder='data/Vimeo-90K/GT', | ||
ann_file='data/Vimeo-90K/meta_info_Vimeo90K_train_GT.txt', | ||
num_input_frames=5, | ||
pipeline=train_pipeline, | ||
scale=4, | ||
test_mode=False)), | ||
val=dict( | ||
type=val_dataset_type, | ||
lq_folder='data/Vid4/BDx4', | ||
gt_folder='data/Vid4/GT', | ||
pipeline=val_pipeline, | ||
ann_file='data/Vid4/meta_info_Vid4_GT.txt', | ||
scale=4, | ||
num_input_frames=5, | ||
test_mode=True), | ||
test=dict( | ||
type=val_dataset_type, | ||
lq_folder='data/SPMCS/BDx4', | ||
gt_folder='data/SPMCS/GT', | ||
pipeline=val_pipeline, | ||
ann_file='data/SPMCS/meta_info_SPMCS_GT.txt', | ||
scale=4, | ||
num_input_frames=5, | ||
test_mode=True), | ||
) | ||
|
||
# optimizer | ||
optimizers = dict(generator=dict(type='Adam', lr=1e-4, weight_decay=1e-6)) | ||
|
||
# learning policy | ||
total_iters = 800000 | ||
lr_config = dict(policy='Step', by_epoch=False, step=[800000], gamma=0.5) | ||
|
||
checkpoint_config = dict(interval=50000, save_optimizer=True, by_epoch=False) | ||
# remove gpu_collect=True in non distributed training | ||
evaluation = dict(interval=50000, save_image=False, gpu_collect=True) | ||
log_config = dict( | ||
interval=100, | ||
hooks=[ | ||
dict(type='TextLoggerHook', by_epoch=False), | ||
# dict(type='TensorboardLoggerHook'), | ||
]) | ||
visual_config = None | ||
|
||
# runtime settings | ||
dist_params = dict(backend='nccl') | ||
log_level = 'INFO' | ||
work_dir = f'./work_dirs/{exp_name}' | ||
load_from = None | ||
resume_from = None | ||
workflow = [('train', 1)] |
Oops, something went wrong.