Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Enhancement] Support noise offset in stable diffusion training #1880

Merged
merged 3 commits into from
May 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 7 additions & 2 deletions mmagic/models/editors/controlnet/controlnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,9 @@ class ControlStableDiffusion(StableDiffusion):
dtype (str, optional): The dtype for the model. Defaults to 'fp16'.
enable_xformers (bool, optional): Whether to use xformers.
Defaults to True.
noise_offset_weight (bool, optional): The weight of noise offset
introduced in https://www.crosslabs.org/blog/diffusion-with-offset-noise # noqa
Defaults to 0.
data_preprocessor (dict, optional): The pre-process config of
:class:`BaseDataPreprocessor`. Defaults to
dict(type='DataPreprocessor').
Expand All @@ -63,12 +66,14 @@ def __init__(self,
test_scheduler: Optional[ModelType] = None,
dtype: str = 'fp32',
enable_xformers: bool = True,
noise_offset_weight: float = 0,
tomesd_cfg: Optional[dict] = None,
data_preprocessor=dict(type='DataPreprocessor'),
init_cfg: Optional[dict] = None):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler,
test_scheduler, dtype, enable_xformers, tomesd_cfg,
data_preprocessor, init_cfg)
test_scheduler, dtype, enable_xformers,
noise_offset_weight, tomesd_cfg, data_preprocessor,
init_cfg)

default_args = dict()
if dtype is not None:
Expand Down
9 changes: 7 additions & 2 deletions mmagic/models/editors/dreambooth/dreambooth.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,9 @@ class DreamBooth(StableDiffusion):
dtype (str, optional): The dtype for the model. Defaults to 'fp16'.
enable_xformers (bool, optional): Whether to use xformers.
Defaults to True.
noise_offset_weight (bool, optional): The weight of noise offset
introduced in https://www.crosslabs.org/blog/diffusion-with-offset-noise # noqa
Defaults to 0.
data_preprocessor (dict, optional): The pre-process config of
:class:`BaseDataPreprocessor`. Defaults to
dict(type='DataPreprocessor').
Expand All @@ -73,14 +76,16 @@ def __init__(self,
finetune_text_encoder: bool = False,
dtype: str = 'fp16',
enable_xformers: bool = True,
noise_offset_weight: float = 0,
tomesd_cfg: Optional[dict] = None,
data_preprocessor: Optional[ModelType] = dict(
type='DataPreprocessor'),
init_cfg: Optional[dict] = None):

super().__init__(vae, text_encoder, tokenizer, unet, scheduler,
test_scheduler, dtype, enable_xformers, tomesd_cfg,
data_preprocessor, init_cfg)
test_scheduler, dtype, enable_xformers,
noise_offset_weight, tomesd_cfg, data_preprocessor,
init_cfg)
self.num_class_images = num_class_images
self.class_prior_prompt = class_prior_prompt
self.prior_loss_weight = prior_loss_weight
Expand Down
16 changes: 16 additions & 0 deletions mmagic/models/editors/stable_diffusion/stable_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,9 @@ class StableDiffusion(BaseModel):
when dtype is defined for submodels. Defaults to None.
enable_xformers (bool, optional): Whether to use xformers.
Defaults to True.
noise_offset_weight (bool, optional): The weight of noise offset
introduced in https://www.crosslabs.org/blog/diffusion-with-offset-noise
Defaults to 0.
data_preprocessor (dict, optional): The pre-process config of
:class:`BaseDataPreprocessor`.
init_cfg (dict, optional): The weight initialized config for
Expand All @@ -62,6 +65,7 @@ def __init__(self,
test_scheduler: Optional[ModelType] = None,
dtype: Optional[str] = None,
enable_xformers: bool = True,
noise_offset_weight: float = 0,
tomesd_cfg: Optional[dict] = None,
data_preprocessor: Optional[ModelType] = dict(
type='DataPreprocessor'),
Expand Down Expand Up @@ -102,6 +106,9 @@ def __init__(self,
self.unet_sample_size = self.unet.sample_size
self.vae_scale_factor = 2**(len(self.vae.block_out_channels) - 1)

self.enable_noise_offset = noise_offset_weight > 0
self.noise_offset_weight = noise_offset_weight

self.enable_xformers = enable_xformers
self.set_xformers()

Expand Down Expand Up @@ -612,6 +619,15 @@ def train_step(self, data, optim_wrapper_dict):
latents = latents * vae.config.scaling_factor

noise = torch.randn_like(latents)

if self.enable_noise_offset:
noise = noise + self.noise_offset_weight * torch.randn(
latents.shape[0],
latents.shape[1],
1,
1,
device=noise.device)

timesteps = torch.randint(
0,
self.scheduler.num_train_timesteps, (num_batches, ),
Expand Down