Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Add TDAN config and models #347

Merged
merged 4 commits into from
Jun 1, 2021
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,7 @@ Supported algorithms:
- [x] [RDN](configs/restorers/rdn/README.md) (CVPR'2018)
- [x] [SRCNN](configs/restorers/srcnn/README.md) (TPAMI'2015)
- [x] [SRResNet&SRGAN](configs/restorers/srresnet_srgan/README.md) (CVPR'2016)
- [x] [TDAN](configs/restorers/tdan/README.md) (CVPR'2020)
- [x] [TOF](configs/restorers/tof/README.md) (IJCV'2019)
- [x] [TTSR](configs/restorers/ttsr/README.md) (CVPR'2020)

Expand Down
1 change: 1 addition & 0 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,7 @@ MMEditing 是基于 PyTorch 的图像&视频编辑开源工具箱。是 [OpenMML
- [x] [RDN](configs/restorers/rdn/README.md) (CVPR'2018)
- [x] [SRCNN](configs/restorers/srcnn/README.md) (TPAMI'2015)
- [x] [SRResNet&SRGAN](configs/restorers/srresnet_srgan/README.md) (CVPR'2016)
- [x] [TDAN](configs/restorers/tdan/README.md) (CVPR'2020)
- [x] [TOF](configs/restorers/tof/README.md) (IJCV'2019)
- [x] [TTSR](configs/restorers/ttsr/README.md) (CVPR'2020)

Expand Down
67 changes: 67 additions & 0 deletions configs/restorers/tdan/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
# TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution

## Introduction

<!-- [ALGORITHM] -->

```bibtex
@InProceedings{tian2020tdan,
title={TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution},
author={Tian, Yapeng and Zhang, Yulun and Fu, Yun and Xu, Chenliang},
booktitle = {Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
year = {2020}
}
```

## Results and Models

Evaluated on Y-channel. 8 pixels in each border are cropped before evaluation.

The metrics are `PSNR / SSIM`.

| Method | Vid4 (BIx4) | SPMCS-30 (BIx4) | Vid4 (BDx4) | SPMCS-30 (BDx4) | Download |
|:-------------------------------------------------------------------:|:---------------:|:---------------:|:---------------:|:---------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| [tdan_vimeo90k_bix4](/configs/restorers/tdan/tdan_vimeo90k_bix4.py) | **26.49/0.792** | **30.42/0.856** | 25.93/0.772 | 29.69/0.842 | [model](https://download.openmmlab.com/mmediting/restorers/tdan/tdan_vimeo90k_bix4_20210528-739979d9.pth) \| [log](https://download.openmmlab.com/mmediting/restorers/tdan/tdan_vimeo90k_bix4_20210528_135616.log.json) |
| [tdan_vimeo90k_bdx4](/configs/restorers/tdan/tdan_vimeo90k_bdx4.py) | 25.80/0.784 | 29.56/0.851 | **26.87/0.815** | **30.77/0.868** | [model](https://download.openmmlab.com/mmediting/restorers/tdan/tdan_vimeo90k_bdx4_20210528-c53ab844.pth) \| [log](https://download.openmmlab.com/mmediting/restorers/tdan/tdan_vimeo90k_bdx4_20210528_122401.log.json) |


## Train

You can use the following command to train a model.

```shell
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]
```

TDAN is trained with two stages. For example:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For example:


**Stage 1**: Training with a larger learning rate (1e-4)


```shell
./tools/dist_train.sh configs/restorers/tdan/tdan_vimeo90k_bix4_lr1e-4_400k.py 8
```

**Stage 2**: Fine-tune with a smaller learning rate (5e-5)

```shell
./tools/dist_train.sh configs/restorers/tdan/tdan_vimeo90k_bix4_ft_lr5e-5_400k.py 8
```

For more details, you can refer to **Train a model** part in [getting_started](/docs/getting_started.md#train-a-model).

## Test

You can use the following command to test a model.

```shell
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--save-path ${IMAGE_SAVE_PATH}]
```

Example: Test TDAN on SPMCS-30 using Bicubic downsampling.

```shell
python tools/test.py configs/restorers/tdan/tdan_vimeo90k_bix4_ft_lr5e-5_400k.py checkpoints/SOME_CHECKPOINT.pth --save_path outputs/
```

For more details, you can refer to **Inference with pretrained models** part in [getting_started](/docs/getting_started.md#inference-with-pretrained-models).
127 changes: 127 additions & 0 deletions configs/restorers/tdan/tdan_vimeo90k_bdx4_ft_lr5e-5_800k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
exp_name = 'tdan_vimeo90k_bdx4_ft_lr5e-5_800k'

# model settings
model = dict(
type='TDAN',
generator=dict(type='TDANNet'),
pixel_loss=dict(type='MSELoss', loss_weight=1.0, reduction='mean'),
lq_pixel_loss=dict(type='MSELoss', loss_weight=0.01, reduction='mean'))
# model training and testing settings
train_cfg = None
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=8, convert_to='y')

# dataset settings
train_dataset_type = 'SRVimeo90KDataset'
val_dataset_type = 'SRVid4Dataset'

train_pipeline = [
dict(
type='LoadImageFromFileList',
io_backend='disk',
key='lq',
channel_order='rgb'),
dict(
type='LoadImageFromFileList',
io_backend='disk',
key='gt',
channel_order='rgb'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0.5, 0.5, 0.5],
std=[1, 1, 1]),
dict(type='PairedRandomCrop', gt_patch_size=192),
dict(
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,
direction='horizontal'),
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),
dict(type='FramesToTensor', keys=['lq', 'gt']),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path'])
]

val_pipeline = [
dict(type='GenerateFrameIndiceswithPadding', padding='reflection'),
dict(
type='LoadImageFromFileList',
io_backend='disk',
key='lq',
channel_order='rgb'),
dict(
type='LoadImageFromFileList',
io_backend='disk',
key='gt',
channel_order='rgb'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0.5, 0.5, 0.5],
std=[1, 1, 1]),
dict(type='FramesToTensor', keys=['lq', 'gt']),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path'])
]

data = dict(
workers_per_gpu=8,
train_dataloader=dict(samples_per_gpu=16, drop_last=True), # 8 gpus
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='RepeatDataset',
times=1000,
dataset=dict(
type=train_dataset_type,
lq_folder='data/Vimeo-90K/BDx4',
gt_folder='data/Vimeo-90K/GT',
ann_file='data/Vimeo-90K/meta_info_Vimeo90K_train_GT.txt',
num_input_frames=5,
pipeline=train_pipeline,
scale=4,
test_mode=False)),
val=dict(
type=val_dataset_type,
lq_folder='data/Vid4/BDx4',
gt_folder='data/Vid4/GT',
pipeline=val_pipeline,
ann_file='data/Vid4/meta_info_Vid4_GT.txt',
scale=4,
num_input_frames=5,
test_mode=True),
test=dict(
type=val_dataset_type,
lq_folder='data/SPMCS/BDx4',
gt_folder='data/SPMCS/GT',
pipeline=val_pipeline,
ann_file='data/SPMCS/meta_info_SPMCS_GT.txt',
scale=4,
num_input_frames=5,
test_mode=True),
)

# optimizer
optimizers = dict(generator=dict(type='Adam', lr=5e-5))

# learning policy
total_iters = 800000
lr_config = dict(policy='Step', by_epoch=False, step=[800000], gamma=0.5)

checkpoint_config = dict(interval=50000, save_optimizer=True, by_epoch=False)
# remove gpu_collect=True in non distributed training
evaluation = dict(interval=50000, save_image=False, gpu_collect=True)
log_config = dict(
interval=100,
hooks=[
dict(type='TextLoggerHook', by_epoch=False),
# dict(type='TensorboardLoggerHook'),
])
visual_config = None

# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/{exp_name}'
load_from = './experiments/tdan_vimeo90k_bdx4_lr1e-4_400k/iter_400000.pth'
resume_from = None
workflow = [('train', 1)]
127 changes: 127 additions & 0 deletions configs/restorers/tdan/tdan_vimeo90k_bdx4_lr1e-4_400k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
exp_name = 'tdan_vimeo90k_bdx4_lr1e-4_400k'

# model settings
model = dict(
type='TDAN',
generator=dict(type='TDANNet'),
pixel_loss=dict(type='MSELoss', loss_weight=1.0, reduction='mean'),
lq_pixel_loss=dict(type='MSELoss', loss_weight=0.01, reduction='mean'))
# model training and testing settings
train_cfg = None
test_cfg = dict(metrics=['PSNR', 'SSIM'], crop_border=8, convert_to='y')

# dataset settings
train_dataset_type = 'SRVimeo90KDataset'
val_dataset_type = 'SRVid4Dataset'

train_pipeline = [
dict(
type='LoadImageFromFileList',
io_backend='disk',
key='lq',
channel_order='rgb'),
dict(
type='LoadImageFromFileList',
io_backend='disk',
key='gt',
channel_order='rgb'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0.5, 0.5, 0.5],
std=[1, 1, 1]),
dict(type='PairedRandomCrop', gt_patch_size=192),
dict(
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,
direction='horizontal'),
dict(type='Flip', keys=['lq', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['lq', 'gt'], transpose_ratio=0.5),
dict(type='FramesToTensor', keys=['lq', 'gt']),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path'])
]

val_pipeline = [
dict(type='GenerateFrameIndiceswithPadding', padding='reflection'),
dict(
type='LoadImageFromFileList',
io_backend='disk',
key='lq',
channel_order='rgb'),
dict(
type='LoadImageFromFileList',
io_backend='disk',
key='gt',
channel_order='rgb'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0.5, 0.5, 0.5],
std=[1, 1, 1]),
dict(type='FramesToTensor', keys=['lq', 'gt']),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'gt_path'])
]

data = dict(
workers_per_gpu=8,
train_dataloader=dict(samples_per_gpu=16, drop_last=True), # 8 gpus
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='RepeatDataset',
times=1000,
dataset=dict(
type=train_dataset_type,
lq_folder='data/Vimeo-90K/BDx4',
gt_folder='data/Vimeo-90K/GT',
ann_file='data/Vimeo-90K/meta_info_Vimeo90K_train_GT.txt',
num_input_frames=5,
pipeline=train_pipeline,
scale=4,
test_mode=False)),
val=dict(
type=val_dataset_type,
lq_folder='data/Vid4/BDx4',
gt_folder='data/Vid4/GT',
pipeline=val_pipeline,
ann_file='data/Vid4/meta_info_Vid4_GT.txt',
scale=4,
num_input_frames=5,
test_mode=True),
test=dict(
type=val_dataset_type,
lq_folder='data/SPMCS/BDx4',
gt_folder='data/SPMCS/GT',
pipeline=val_pipeline,
ann_file='data/SPMCS/meta_info_SPMCS_GT.txt',
scale=4,
num_input_frames=5,
test_mode=True),
)

# optimizer
optimizers = dict(generator=dict(type='Adam', lr=1e-4, weight_decay=1e-6))

# learning policy
total_iters = 800000
lr_config = dict(policy='Step', by_epoch=False, step=[800000], gamma=0.5)

checkpoint_config = dict(interval=50000, save_optimizer=True, by_epoch=False)
# remove gpu_collect=True in non distributed training
evaluation = dict(interval=50000, save_image=False, gpu_collect=True)
log_config = dict(
interval=100,
hooks=[
dict(type='TextLoggerHook', by_epoch=False),
# dict(type='TensorboardLoggerHook'),
])
visual_config = None

# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = f'./work_dirs/{exp_name}'
load_from = None
resume_from = None
workflow = [('train', 1)]
Loading