Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Configuration file of GLEAN for blind face image restoration #530

Merged
merged 4 commits into from
Sep 16, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 6 additions & 5 deletions configs/restorers/glean/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,9 @@

For the meta info used in training and test, please refer to [here](https://github.com/ckkelvinchan/GLEAN). The results are evaluated on RGB channels.

| Method | PSNR | Download |
| :----------------------------------------------------------: | :---: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [glean_cat_8x](/configs/restorers/glean/glean_cat_8x.py) | 23.98 | [model](https://download.openmmlab.com/mmediting/restorers/glean/glean_cat_8x_20210614-d3ac8683.pth) \| [log](https://download.openmmlab.com/mmediting/restorers/glean/glean_cat_8x_20210614_145540.log.json) |
| [glean_ffhq_16x](/configs/restorers/glean/glean_ffhq_16x.py) | 26.91 | [model](https://download.openmmlab.com/mmediting/restorers/glean/glean_ffhq_16x_20210527-61a3afad.pth) \| [log](https://download.openmmlab.com/mmediting/restorers/glean/glean_ffhq_16x_20210527_194536.log.json) |
| [glean_cat_16x](/configs/restorers/glean/glean_cat_16x.py) | 20.88 | [model](https://download.openmmlab.com/mmediting/restorers/glean/glean_cat_16x_20210527-68912543.pth) \| [log](https://download.openmmlab.com/mmediting/restorers/glean/glean_cat_16x_20210527_103708.log.json) |
| Method | PSNR | Download |
|--------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [glean_cat_8x](/configs/restorers/glean/glean_cat_8x.py) | 23.98 | [model](https://download.openmmlab.com/mmediting/restorers/glean/glean_cat_8x_20210614-d3ac8683.pth) \| [log](https://download.openmmlab.com/mmediting/restorers/glean/glean_cat_8x_20210614_145540.log.json) |
| [glean_ffhq_16x](/configs/restorers/glean/glean_ffhq_16x.py) | 26.91 | [model](https://download.openmmlab.com/mmediting/restorers/glean/glean_ffhq_16x_20210527-61a3afad.pth) \| [log](https://download.openmmlab.com/mmediting/restorers/glean/glean_ffhq_16x_20210527_194536.log.json) |
| [glean_cat_16x](/configs/restorers/glean/glean_cat_16x.py) | 20.88 | [model](https://download.openmmlab.com/mmediting/restorers/glean/glean_cat_16x_20210527-68912543.pth) \| [log](https://download.openmmlab.com/mmediting/restorers/glean/glean_cat_16x_20210527_103708.log.json) |
| [glean_in128out1024_4x2_300k_ffhq_celebahq](/configs/restorers/glean/glean_in128out1024_4x2_300k_ffhq_celebahq.py) | 27.94 | [model](https://download.openmmlab.com/mmediting/restorers/glean/glean_in128out1024_4x2_300k_ffhq_celebahq_20210812-acbcb04f.pth) \| [log](https://download.openmmlab.com/mmediting/restorers/glean/glean_in128out1024_4x2_300k_ffhq_celebahq_20210812_100549.log.json) |
213 changes: 213 additions & 0 deletions configs/restorers/glean/glean_in128out1024_4x2_300k_ffhq_celebahq.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
exp_name = 'glean_in128out1024_4x2_300k_ffhq_celebahq'

scale = 8
# model settings
model = dict(
type='GLEAN',
generator=dict(
type='GLEANStyleGANv2',
in_size=128,
out_size=1024,
style_channels=512,
pretrained=dict(
ckpt_path='http://download.openmmlab.com/mmgen/stylegan2/'
'official_weights/stylegan2-ffhq-config-f-official_20210327'
'_171224-bce9310c.pth',
prefix='generator_ema')),
discriminator=dict(
type='StyleGAN2Discriminator',
in_size=1024,
pretrained=dict(
ckpt_path='http://download.openmmlab.com/mmgen/stylegan2/'
'official_weights/stylegan2-ffhq-config-f-official_20210327'
'_171224-bce9310c.pth',
prefix='discriminator')),
pixel_loss=dict(type='MSELoss', loss_weight=1.0, reduction='mean'),
perceptual_loss=dict(
type='PerceptualLoss',
layer_weights={'21': 1.0},
vgg_type='vgg16',
perceptual_weight=1e-2,
style_weight=0,
norm_img=True,
criterion='mse',
pretrained='torchvision://vgg16'),
gan_loss=dict(
type='GANLoss',
gan_type='vanilla',
loss_weight=1e-2,
real_label_val=1.0,
fake_label_val=0),
pretrained=None,
)

# model training and testing settings
train_cfg = None
test_cfg = dict(metrics=['PSNR'], crop_border=0)

# dataset settings
train_dataset_type = 'SRFolderDataset'
val_dataset_type = 'SRAnnotationDataset'
train_pipeline = [
dict(
type='LoadImageFromFile',
io_backend='disk',
key='gt',
channel_order='rgb'),
dict(type='RescaleToZeroOne', keys=['gt']),
dict(type='CopyValues', src_keys=['gt'], dst_keys=['lq']),
dict(
type='RandomBlur',
params=dict(
kernel_size=[41],
kernel_list=['iso', 'aniso'],
kernel_prob=[0.5, 0.5],
sigma_x=[0.2, 10],
sigma_y=[0.2, 10],
rotate_angle=[-3.1416, 3.1416],
),
keys=['lq'],
),
dict(
type='RandomResize',
params=dict(
resize_mode_prob=[0, 1, 0], # up, down, keep
resize_scale=[0.03125, 1],
resize_opt=['bilinear', 'area', 'bicubic'],
resize_prob=[1 / 3., 1 / 3., 1 / 3.]),
keys=['lq'],
),
dict(
type='RandomNoise',
params=dict(
noise_type=['gaussian'],
noise_prob=[1],
gaussian_sigma=[0, 50],
gaussian_gray_noise_prob=0),
keys=['lq'],
),
dict(
type='RandomJPEGCompression',
params=dict(quality=[5, 50]),
keys=['lq']),
dict(
type='RandomResize',
params=dict(
target_size=[1024, 1024],
resize_opt=['bilinear', 'area', 'bicubic'],
resize_prob=[1 / 3., 1 / 3., 1 / 3.]),
keys=['lq'],
),
dict(type='Quantize', keys=['lq']),
dict(
type='RandomResize',
params=dict(
target_size=[128, 128], resize_opt=['area'], resize_prob=[1]),
keys=['lq'],
),
dict(
type='Flip', keys=['lq', 'gt'], flip_ratio=0.5,
direction='horizontal'),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
),
dict(type='ImageToTensor', keys=['lq', 'gt']),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['gt_path'])
]

test_pipeline = [
dict(type='LoadImageFromFile', io_backend='disk', key='lq'),
dict(type='LoadImageFromFile', io_backend='disk', key='gt'),
dict(type='RescaleToZeroOne', keys=['lq', 'gt']),
dict(
type='Normalize',
keys=['lq', 'gt'],
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
to_rgb=True),
dict(type='ImageToTensor', keys=['lq', 'gt']),
dict(type='Collect', keys=['lq', 'gt'], meta_keys=['lq_path', 'lq_path'])
]

demo_pipeline = [
dict(
type='RandomResize',
params=dict(
target_size=[128, 128], resize_opt=['area'], resize_prob=[1]),
keys=['lq'],
),
dict(type='RescaleToZeroOne', keys=['lq']),
dict(
type='Normalize',
keys=['lq'],
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
to_rgb=True),
dict(type='ImageToTensor', keys=['lq']),
dict(type='Collect', keys=['lq'], meta_keys=[])
]

data = dict(
workers_per_gpu=6,
train_dataloader=dict(samples_per_gpu=2, drop_last=True), # 4 gpus
val_dataloader=dict(samples_per_gpu=1, persistent_workers=False),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='RepeatDataset',
times=30,
dataset=dict(
type=train_dataset_type,
lq_folder='data/FFHQ_CelebAHQ/GT',
gt_folder='data/FFHQ_CelebAHQ/GT',
pipeline=train_pipeline,
scale=scale)),
val=dict(
type=val_dataset_type,
lq_folder='data/CelebA-HQ/BIx8_down',
gt_folder='data/CelebA-HQ/GT',
ann_file='data/CelebA-HQ/meta_info_CelebAHQ_val100_GT.txt',
pipeline=test_pipeline,
scale=scale),
test=dict(
type=val_dataset_type,
lq_folder='data/CelebA-HQ/BIx8_down',
gt_folder='data/CelebA-HQ/GT',
ann_file='data/CelebA-HQ/meta_info_CelebAHQ_val100_GT.txt',
pipeline=test_pipeline,
scale=scale))

# optimizer
optimizers = dict(
generator=dict(type='Adam', lr=1e-4, betas=(0.9, 0.99)),
discriminator=dict(type='Adam', lr=1e-4, betas=(0.9, 0.99)))

# learning policy
total_iters = 300000
lr_config = dict(
policy='CosineRestart',
by_epoch=False,
periods=[300000],
restart_weights=[1],
min_lr=1e-7)

checkpoint_config = dict(interval=5000, save_optimizer=True, by_epoch=False)
evaluation = dict(interval=5000, save_image=False, gpu_collect=True)
log_config = dict(
interval=100,
hooks=[
dict(type='TextLoggerHook', by_epoch=False),
# dict(type='TensorboardLoggerHook'),
])
visual_config = None

# runtime settings
dist_params = dict(backend='nccl', port=29501)
log_level = 'INFO'
work_dir = f'./work_dirs/{exp_name}'
load_from = None
resume_from = None
workflow = [('train', 1)]
find_unused_parameters = True