Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Support tin_shift with cambricon MLU backend #1696

Merged
merged 6 commits into from
Mar 29, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
307 changes: 307 additions & 0 deletions mmcv/ops/csrc/common/mlu/tin_shift_mlu_kernel.mlu
Original file line number Diff line number Diff line change
@@ -0,0 +1,307 @@
/*************************************************************************
* Copyright (C) 2022 Cambricon.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*************************************************************************/
#include "common_mlu_helper.hpp"

__nram__ char data_nram[MAX_NRAM_SIZE];

template <typename T>
__mlu_func__ void mluMultiKernelTinShift(
const T *input, const int *shifts, T *output, const int batch_size,
const int time_size, const int channel_size, const int hw_size,
const int group_size, const int group_channel) {
for (int cur_channel_index = taskId;
cur_channel_index < batch_size * channel_size;
cur_channel_index += taskDim) {
int n_index = cur_channel_index / channel_size;
int group_id = cur_channel_index % channel_size / group_channel;
int t_shift = shifts[n_index * group_size + group_id];
int index = cur_channel_index % channel_size * hw_size +
n_index * time_size * channel_size * hw_size;
__nramset(data_nram, MAX_NRAM_SIZE, (char)0);
__asm__ volatile("sync;");
if (abs(t_shift) >= time_size) {
__memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
time_size - 1);
} else {
if (t_shift > 0) {
__memcpy(data_nram + t_shift * hw_size * sizeof(T), input + index,
hw_size * sizeof(T), GDRAM2NRAM, hw_size * sizeof(T),
channel_size * hw_size * sizeof(T), time_size - 1 - t_shift);
__memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
time_size - 1);
} else {
__memcpy(data_nram, input + (index - t_shift * channel_size * hw_size),
hw_size * sizeof(T), GDRAM2NRAM, hw_size * sizeof(T),
channel_size * hw_size * sizeof(T), time_size - 1 + t_shift);
__memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
time_size - 1);
}
}
__asm__ volatile("sync;");
}
}

template <typename T>
__mlu_func__ void mluHwSplit(const T *input, const int t_shift,
const int time_size, const int hw_size,
const int channel_size, const int index,
const int cur_sequence_index,
const int max_length_per_core, T *output) {
for (int cur_index = index; cur_index < index + hw_size;
cur_index += max_length_per_core) {
int memcpy_size = max_length_per_core;
if (cur_index + max_length_per_core > index + hw_size) {
memcpy_size = index + hw_size - cur_index;
}
if (cur_sequence_index - t_shift < 0 ||
cur_sequence_index - t_shift >= time_size) {
__memcpy(output + cur_index, data_nram, memcpy_size * sizeof(T),
NRAM2GDRAM);
} else {
__memcpy(data_nram, input + cur_index - t_shift * channel_size * hw_size,
memcpy_size * sizeof(T), GDRAM2NRAM);
__memcpy(output + cur_index, data_nram, memcpy_size * sizeof(T),
NRAM2GDRAM);
}
__asm__ volatile("sync;");
}
}

template <typename T>
__mlu_func__ void mluMultiKernelTinShiftSplitSequence(
const T *input, const int *shifts, T *output, const int batch_size,
const int time_size, const int channel_size, const int hw_size,
const int group_size, const int group_channel,
const int max_number_hw_per_core, const int max_length_per_core) {
const int tmp_max_number_hw_per_core =
max_number_hw_per_core > 0 ? max_number_hw_per_core : 1;
const int loop_time = time_size / tmp_max_number_hw_per_core +
((time_size % tmp_max_number_hw_per_core) > 0 ? 1 : 0);
int segmentime_size = tmp_max_number_hw_per_core;
int res_segment = time_size % tmp_max_number_hw_per_core;

for (int cur_segment_index = taskId;
cur_segment_index < loop_time * batch_size * channel_size;
cur_segment_index += taskDim) {
int n_index = cur_segment_index / loop_time / channel_size;
int group_id = cur_segment_index / loop_time % channel_size / group_channel;
int t_shift = shifts[n_index * group_size + group_id];
int index = n_index * time_size * channel_size * hw_size +
(cur_segment_index / loop_time % channel_size) * hw_size +
cur_segment_index % loop_time * segmentime_size * hw_size *
channel_size;
char *dst_gdram2nram = data_nram;
const T *src_gdram2nram = input + index;
int count_gdram2nram = -1;
int count_nram2gdram = -1;
int next_sequence_index =
index / hw_size / channel_size % time_size + segmentime_size;
int cur_sequence_index = index / hw_size / channel_size % time_size;
__nramset(data_nram, MAX_NRAM_SIZE, (char)0);
__asm__ volatile("sync;");
if (max_number_hw_per_core == 0) {
mluHwSplit(input, t_shift, time_size, hw_size, channel_size, index,
cur_sequence_index, max_length_per_core, output);
continue;
}
if (abs(t_shift) >= time_size) {
if ((cur_segment_index + 1) % loop_time == 0 && res_segment != 0) {
__memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
res_segment - 1);
} else {
__memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
segmentime_size - 1);
}
continue;
}
if (t_shift == 0) {
if ((cur_segment_index + 1) % loop_time == 0 && res_segment != 0) {
dst_gdram2nram = data_nram;
src_gdram2nram = input + index;
count_gdram2nram = res_segment - 1;
count_nram2gdram = res_segment - 1;
} else {
dst_gdram2nram = data_nram;
src_gdram2nram = input + index;
count_gdram2nram = segmentime_size - 1;
count_nram2gdram = segmentime_size - 1;
}
} else if (t_shift > 0) {
int first_index_cur_channel =
n_index * time_size * channel_size * hw_size +
(cur_segment_index / loop_time % channel_size) * hw_size;
if ((cur_segment_index + 1) % loop_time == 0 && res_segment != 0) {
dst_gdram2nram = data_nram;
src_gdram2nram =
input +
(index - t_shift * channel_size * hw_size < first_index_cur_channel
? first_index_cur_channel
: index - t_shift * channel_size * hw_size);
count_gdram2nram = res_segment - 1;
count_nram2gdram = res_segment - 1;
if (cur_sequence_index < t_shift && t_shift < next_sequence_index) {
dst_gdram2nram =
data_nram + t_shift % segmentime_size * hw_size * sizeof(T);
count_gdram2nram = res_segment - (t_shift - cur_sequence_index) - 1;
}
} else {
if (t_shift >= next_sequence_index) {
__memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
segmentime_size - 1);
continue;
} else if (cur_sequence_index < t_shift &&
t_shift < next_sequence_index) {
dst_gdram2nram =
data_nram + t_shift % segmentime_size * hw_size * sizeof(T);
src_gdram2nram = input + first_index_cur_channel;
count_gdram2nram = segmentime_size - (t_shift % segmentime_size) - 1;
count_nram2gdram = segmentime_size - 1;
} else {
dst_gdram2nram = data_nram;
src_gdram2nram = input + index - t_shift * channel_size * hw_size;
count_gdram2nram = segmentime_size - 1;
count_nram2gdram = segmentime_size - 1;
}
}
} else {
int offset_index = time_size + t_shift;
if (cur_sequence_index >= offset_index) {
if ((cur_segment_index + 1) % loop_time == 0 && res_segment != 0) {
__memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
res_segment - 1);
continue;
} else {
__memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
segmentime_size - 1);
continue;
}
} else {
dst_gdram2nram = data_nram;
src_gdram2nram = input + index - t_shift * channel_size * hw_size;
if (cur_sequence_index - t_shift + segmentime_size < time_size) {
count_gdram2nram = segmentime_size - 1;
count_nram2gdram = segmentime_size - 1;
} else {
count_gdram2nram = time_size - (cur_sequence_index - t_shift) - 1;
count_nram2gdram =
(segmentime_size - 1) < (time_size - cur_sequence_index - 1)
? (segmentime_size - 1)
: (time_size - cur_sequence_index - 1);
}
}
}
__memcpy(dst_gdram2nram, src_gdram2nram, hw_size * sizeof(T), GDRAM2NRAM,
hw_size * sizeof(T), channel_size * hw_size * sizeof(T),
count_gdram2nram);
__memcpy(output + index, data_nram, hw_size * sizeof(T), NRAM2GDRAM,
channel_size * hw_size * sizeof(T), hw_size * sizeof(T),
count_nram2gdram);
__asm__ volatile("sync;");
}
}

__mlu_entry__ void MLUUnion1KernelTinShift(
const void *input, const void *shifts, void *output, const int batch_size,
const int time_size, const int channel_size, const int hw_size,
const int group_size, const int group_channel,
const cnrtDataType_t data_dtype) {
// make sure that memcore is not used
if (coreId == 0x80) {
return;
}
switch (data_dtype) {
case CNRT_FLOAT16: {
mluMultiKernelTinShift((half *)input, (const int *)shifts, (half *)output,
batch_size, time_size, channel_size, hw_size,
group_size, group_channel);
}; break;
case CNRT_FLOAT32: {
mluMultiKernelTinShift((float *)input, (const int *)shifts,
(float *)output, batch_size, time_size,
channel_size, hw_size, group_size, group_channel);
}; break;
default: { return; }
}
}

__mlu_entry__ void MLUUnion1KernelTinShiftSplitSequence(
const void *input, const void *shifts, void *output, const int batch_size,
const int time_size, const int channel_size, const int hw_size,
const int group_size, const int group_channel,
const int max_number_hw_per_core, const int max_length_per_core,
const cnrtDataType_t data_dtype) {
// make sure that memcore is not used
if (coreId == 0x80) {
return;
}
switch (data_dtype) {
case CNRT_FLOAT16: {
mluMultiKernelTinShiftSplitSequence(
(half *)input, (const int *)shifts, (half *)output, batch_size,
time_size, channel_size, hw_size, group_size, group_channel,
max_number_hw_per_core, max_length_per_core);
}; break;
case CNRT_FLOAT32: {
mluMultiKernelTinShiftSplitSequence(
(float *)input, (const int *)shifts, (float *)output, batch_size,
time_size, channel_size, hw_size, group_size, group_channel,
max_number_hw_per_core, max_length_per_core);
}; break;
default: { return; }
}
}

void KernelTinShiftForward(
cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
const void *input, const void *shifts, void *output, const int batch_size,
const int time_size, const int channel_size, const int hw_size,
const int group_size, const int group_channel,
const cnrtDataType_t data_dtype, const int channel_per_core,
const int max_number_hw_per_core, const int max_length_per_core) {
if (channel_per_core >= 1) {
MLUUnion1KernelTinShift<<<k_dim, k_type, queue>>>(
input, shifts, output, batch_size, time_size, channel_size, hw_size,
group_size, group_channel, data_dtype);
} else {
MLUUnion1KernelTinShiftSplitSequence<<<k_dim, k_type, queue>>>(
input, shifts, output, batch_size, time_size, channel_size, hw_size,
group_size, group_channel, max_number_hw_per_core, max_length_per_core,
data_dtype);
}
}

void KernelTinShiftBackward(
cnrtDim3_t k_dim, cnrtFunctionType_t k_type, cnrtQueue_t queue,
const void *grad_output, const void *shifts, void *grad_input,
const int batch_size, const int time_size, const int channel_size,
const int hw_size, const int group_size, const int group_channel,
const cnrtDataType_t data_dtype, const int channel_per_core,
const int max_number_hw_per_core, const int max_length_per_core) {
if (channel_per_core >= 1) {
MLUUnion1KernelTinShift<<<k_dim, k_type, queue>>>(
grad_output, shifts, grad_input, batch_size, time_size, channel_size,
hw_size, group_size, group_channel, data_dtype);
} else {
MLUUnion1KernelTinShiftSplitSequence<<<k_dim, k_type, queue>>>(
grad_output, shifts, grad_input, batch_size, time_size, channel_size,
hw_size, group_size, group_channel, max_number_hw_per_core,
max_length_per_core, data_dtype);
}
}
Loading