Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Enhancement] Change the order of condition to make fx wok #2883

Merged
merged 3 commits into from
Aug 3, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions mmcv/cnn/bricks/wrappers.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def backward(ctx, grad: torch.Tensor) -> tuple:
class Conv2d(nn.Conv2d):

def forward(self, x: torch.Tensor) -> torch.Tensor:
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0:
out_shape = [x.shape[0], self.out_channels]
for i, k, p, s, d in zip(x.shape[-2:], self.kernel_size,
self.padding, self.stride, self.dilation):
Expand All @@ -62,7 +62,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor:
class Conv3d(nn.Conv3d):

def forward(self, x: torch.Tensor) -> torch.Tensor:
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0:
out_shape = [x.shape[0], self.out_channels]
for i, k, p, s, d in zip(x.shape[-3:], self.kernel_size,
self.padding, self.stride, self.dilation):
Expand All @@ -84,7 +84,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor:
class ConvTranspose2d(nn.ConvTranspose2d):

def forward(self, x: torch.Tensor) -> torch.Tensor:
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0:
out_shape = [x.shape[0], self.out_channels]
for i, k, p, s, d, op in zip(x.shape[-2:], self.kernel_size,
self.padding, self.stride,
Expand All @@ -106,7 +106,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor:
class ConvTranspose3d(nn.ConvTranspose3d):

def forward(self, x: torch.Tensor) -> torch.Tensor:
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0:
out_shape = [x.shape[0], self.out_channels]
for i, k, p, s, d, op in zip(x.shape[-3:], self.kernel_size,
self.padding, self.stride,
Expand All @@ -127,7 +127,7 @@ class MaxPool2d(nn.MaxPool2d):

def forward(self, x: torch.Tensor) -> torch.Tensor:
# PyTorch 1.9 does not support empty tensor inference yet
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)):
if obsolete_torch_version(TORCH_VERSION, (1, 9)) and x.numel() == 0:
out_shape = list(x.shape[:2])
for i, k, p, s, d in zip(x.shape[-2:], _pair(self.kernel_size),
_pair(self.padding), _pair(self.stride),
Expand All @@ -145,7 +145,7 @@ class MaxPool3d(nn.MaxPool3d):

def forward(self, x: torch.Tensor) -> torch.Tensor:
# PyTorch 1.9 does not support empty tensor inference yet
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)):
if obsolete_torch_version(TORCH_VERSION, (1, 9)) and x.numel() == 0:
out_shape = list(x.shape[:2])
for i, k, p, s, d in zip(x.shape[-3:], _triple(self.kernel_size),
_triple(self.padding),
Expand All @@ -164,7 +164,7 @@ class Linear(torch.nn.Linear):

def forward(self, x: torch.Tensor) -> torch.Tensor:
# empty tensor forward of Linear layer is supported in Pytorch 1.6
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 5)):
if obsolete_torch_version(TORCH_VERSION, (1, 5)) and x.numel() == 0:
out_shape = [x.shape[0], self.out_features]
empty = NewEmptyTensorOp.apply(x, out_shape)
if self.training:
Expand Down
20 changes: 20 additions & 0 deletions tests/test_cnn/test_wrappers.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@
import pytest
import torch
import torch.nn as nn
from mmengine.utils import digit_version
from mmengine.utils.dl_utils import TORCH_VERSION

from mmcv.cnn.bricks import (Conv2d, Conv3d, ConvTranspose2d, ConvTranspose3d,
Linear, MaxPool2d, MaxPool3d)
Expand Down Expand Up @@ -374,3 +376,21 @@ def test_nn_op_forward_called():
wrapper = Linear(3, 3)
wrapper(x_normal)
nn_module_forward.assert_called_with(x_normal)


@pytest.mark.skipif(
digit_version(TORCH_VERSION) < digit_version('1.10'),
reason='MaxPool2d and MaxPool3d will fail fx for torch<=1.9')
def test_fx_compatibility():
from torch import fx

# ensure the fx trace can pass the network
for Net in (MaxPool2d, MaxPool3d):
net = Net(1)
gm_module = fx.symbolic_trace(net) # noqa: F841
for Net in (Linear, ):
net = Net(1, 1)
gm_module = fx.symbolic_trace(net) # noqa: F841
for Net in (Conv2d, ConvTranspose2d, Conv3d, ConvTranspose3d):
net = Net(1, 1, 1)
gm_module = fx.symbolic_trace(net) # noqa: F841