Skip to content

Commit

Permalink
[Feature] Support RTMDet-Ins and improve RTMDet test config. (#9494)
Browse files Browse the repository at this point in the history
* [Feature] Support RTMDet instance segmentation model.

* remove sampler

* fix batch

* fix act

* fix act

* [Enhance] Improve RTMDet AP with YOLO test config.

* update

* update docstring

* clean code

* update

* update readme

* update readme

* release model weights

* update readme

* update readme

* update readme

* update readme
  • Loading branch information
RangiLyu authored Dec 19, 2022
1 parent f7da1f3 commit 8f4360f
Show file tree
Hide file tree
Showing 16 changed files with 1,594 additions and 25 deletions.
21 changes: 21 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,13 +68,32 @@ The master branch works with **PyTorch 1.6+**.
- **State of the art**

The toolbox stems from the codebase developed by the *MMDet* team, who won [COCO Detection Challenge](http://cocodataset.org/#detection-leaderboard) in 2018, and we keep pushing it forward.
The newly released [RTMDet](configs/rtmdet) also obtains new state-of-the-art results on real-time instance segmentation and rotated object detection tasks and the best parameter-accuracy trade-off on object detection.

</details>

Apart from MMDetection, we also released [MMEngine](https://github.com/open-mmlab/mmengine) for model training and [MMCV](https://github.com/open-mmlab/mmcv) for computer vision research, which are heavily depended on by this toolbox.

## What's New

### Highlight

We are excited to announce our latest work on real-time object recognition tasks, **RTMDet**, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the [technical report](https://arxiv.org/abs/2212.07784). Pre-trained models are [here](configs/rtmdet).

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)

| Task | Dataset | AP | FPS(TRT FP16 BS1 3090) |
| ------------------------ | ------- | ------------------------------------ | ---------------------- |
| Object Detection | COCO | 52.8 | 322 |
| Instance Segmentation | COCO | 44.6 | 188 |
| Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |

<div align=center>
<img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/>
</div>

**v3.0.0rc4** was released in 25/11/2022:

- Support [CondInst](https://arxiv.org/abs/2003.05664)
Expand Down Expand Up @@ -187,6 +206,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
<li><a href="configs/deformable_detr">Deformable DETR (ICLR'2021)</a></li>
<li><a href="configs/tood">TOOD (ICCV'2021)</a></li>
<li><a href="configs/ddod">DDOD (ACM MM'2021)</a></li>
<li><a href="configs/RTMDet">RTMDet (ArXiv'2022)</a></li>
</ul>
</td>
<td>
Expand All @@ -206,6 +226,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
<li><a href="configs/mask2former">Mask2Former (ArXiv'2021)</a></li>
<li><a href="configs/condinst">CondInst (ECCV 2020)</a></li>
<li><a href="projects/SparseInst">SparseInst (CVPR 2022)</a></li>
<li><a href="configs/RTMDet">RTMDet (ArXiv'2022)</a></li>
</ul>
</td>
<td>
Expand Down
21 changes: 21 additions & 0 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,13 +67,32 @@ MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [Ope
- **性能高**

MMDetection 这个算法库源自于 COCO 2018 目标检测竞赛的冠军团队 *MMDet* 团队开发的代码,我们在之后持续进行了改进和提升。
新发布的 [RTMDet](configs/rtmdet) 还在实时实例分割和旋转目标检测任务中取得了最先进的成果,同时也在目标检测模型中取得了最佳的的参数量和精度平衡。

</details>

除了 MMDetection 之外,我们还开源了深度学习训练库 [MMEngine](https://github.com/open-mmlab/mmengine) 和计算机视觉基础库 [MMCV](https://github.com/open-mmlab/mmcv),它们是 MMDetection 的主要依赖。

## 最新进展

### 亮点

我们很高兴向大家介绍我们在实时目标识别任务方面的最新成果 RTMDet,包含了一系列的全卷积单阶段检测模型。 RTMDet 不仅在从 tiny 到 extra-large 尺寸的目标检测模型上上实现了最佳的参数量和精度的平衡,而且在实时实例分割和旋转目标检测任务上取得了最先进的成果。 更多细节请参阅[技术报告](https://arxiv.org/abs/2212.07784)。 预训练模型可以在[这里](configs/rtmdet)找到。

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)

| Task | Dataset | AP | FPS(TRT FP16 BS1 3090) |
| ------------------------ | ------- | ------------------------------------ | ---------------------- |
| Object Detection | COCO | 52.8 | 322 |
| Instance Segmentation | COCO | 44.6 | 188 |
| Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |

<div align=center>
<img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/>
</div>

**v3.0.0rc4** 版本已经在 2022.11.25 发布:

- 支持了 [CondInst](https://arxiv.org/abs/2003.05664)
Expand Down Expand Up @@ -188,6 +207,7 @@ MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [Ope
<li><a href="configs/deformable_detr">Deformable DETR (ICLR'2021)</a></li>
<li><a href="configs/tood">TOOD (ICCV'2021)</a></li>
<li><a href="configs/ddod">DDOD (ACM MM'2021)</a></li>
<li><a href="configs/RTMDet">RTMDet (ArXiv'2022)</a></li>
</ul>
</td>
<td>
Expand All @@ -207,6 +227,7 @@ MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [Ope
<li><a href="configs/mask2former">Mask2Former (ArXiv'2021)</a></li>
<li><a href="configs/condinst">CondInst (ECCV 2020)</a></li>
<li><a href="projects/SparseInst">SparseInst (CVPR 2022)</a></li>
<li><a href="configs/RTMDet">RTMDet (ArXiv'2022)</a></li>
</ul>
</td>
<td>
Expand Down
Loading

0 comments on commit 8f4360f

Please sign in to comment.