Skip to content

Commit

Permalink
YOLOv3 - Continue on #1695 (#3083)
Browse files Browse the repository at this point in the history
* Implement YOLOv3

* Remove unused function

* Update yolov3_ms_aug_273e.py

Clean the comments in config file

* Add README.md

* port to mmdet-2.0 api

* unify registry

* port to ConvModule and remove ConvLayer

* Refactor Backbone

* Update README

* Lint and format

* Unify the class name

* fix the `label - 1` problem

* Move a lot hard-coded params to the __init__ function

* Refactor YOLOV3Neck

* Add norm_cfg and act_cfg to backbone

* Update Config

* Fix doc string

* Fix nms (thanks to @LMerCy)

* Add doc string

* Update config

* Remove pretrained in head and neck

* Add support for conv_cfg in neck

* Update mmdet/models/dense_heads/yolo_head.py

Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com>

* Update mmdet/models/dense_heads/yolo_head.py

Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com>

* Fix README.md

* Fix typos

* update config

* flake8, yapf, docformatter, etc

* Update README

* Add conv_cfg to backbone and head

* Move some config to arch_settings in backbone

* Add doc strings and replace Warning with warnings.warn()

* Fix bug.

* Update doc

* Add _frozen_stages for backbone

* Update mmdet/models/backbones/darknet.py

Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com>

* Fix inplace bug

* fix indent

* refactor config

* set 8GPU lr

* fixed typo

* update performance table

* Resolve conversation

* Add anchor generator and coder

* fixed test

* Finish refactor

* refactor anchor order

* fixed batch size

* Fixed train_cfg

* fix yolo assigner

* clean up

* Fixed format

* Update model zoo

* change to mmcv pretrain link

* add test forward

* fixed comma and docstring

* Refactor loss

* reformat

* fixed avg_factor

* revert to original

* fixed format

* update table

* fixed BCE

Co-authored-by: Haoyu Wu <haoyu.wu@wdc.com>
Co-authored-by: Haoyu Wu <wuhy08@users.noreply.github.com>
Co-authored-by: Haoyu Wu <wuhaoyu1989@gmail.com>
Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com>
Co-authored-by: xmpeng <1051323399@qq.com>
  • Loading branch information
6 people authored Aug 31, 2020
1 parent 83f0ca4 commit dfbb6d6
Show file tree
Hide file tree
Showing 25 changed files with 1,540 additions and 13 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -97,6 +97,7 @@ Supported methods:
- [x] [DetectoRS](configs/detectors/README.md)
- [x] [Generalized Focal Loss](configs/gfl/README.md)
- [x] [CornerNet](configs/cornernet/README.md)
- [x] [YOLOv3](configs/yolo/README.md)

Some other methods are also supported in [projects using MMDetection](./docs/projects.md).

Expand Down
25 changes: 25 additions & 0 deletions configs/yolo/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# YOLOv3

## Introduction
```
@misc{redmon2018yolov3,
title={YOLOv3: An Incremental Improvement},
author={Joseph Redmon and Ali Farhadi},
year={2018},
eprint={1804.02767},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```

## Results and Models

| Backbone | Scale | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-------: |
| DarkNet-53 | 320 | 273e | 2.7 | 63.9 | 27.9 | [model](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection/v2.0/yolo/yolov3_d53_320_273e_coco/yolov3_d53_320_273e_coco-421362b6.pth) &#124; [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection/v2.0/yolo/yolov3_d53_320_273e_coco/yolov3_d53_320_273e_coco-20200819_172101.log.json) |
| DarkNet-53 | 416 | 273e | 3.8 | 61.2 | 30.9 | [model](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-416_273e_coco/yolov3_d53_mstrain-416_273e_coco-2b60fcd9.pth) &#124; [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-416_273e_coco/yolov3_d53_mstrain-416_273e_coco-20200819_173424.log.json) |
| DarkNet-53 | 608 | 273e | 7.1 | 48.1 | 33.4 | [model](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-608_273e_coco/yolov3_d53_mstrain-608_273e_coco-139f5633.pth) &#124; [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-608_273e_coco/yolov3_d53_mstrain-608_273e_coco-20200819_170820.log.json) |


## Credit
This implementation originates from the project of Haoyu Wu(@wuhy08) at Western Digital.
42 changes: 42 additions & 0 deletions configs/yolo/yolov3_d53_320_273e_coco.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
_base_ = './yolov3_d53_mstrain-608_273e_coco.py'
# dataset settings
img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='PhotoMetricDistortion'),
dict(
type='Expand',
mean=img_norm_cfg['mean'],
to_rgb=img_norm_cfg['to_rgb'],
ratio_range=(1, 2)),
dict(
type='MinIoURandomCrop',
min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
min_crop_size=0.3),
dict(type='Resize', img_scale=(320, 320), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(320, 320),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
42 changes: 42 additions & 0 deletions configs/yolo/yolov3_d53_mstrain-416_273e_coco.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
_base_ = './yolov3_d53_mstrain-608_273e_coco.py'
# dataset settings
img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='PhotoMetricDistortion'),
dict(
type='Expand',
mean=img_norm_cfg['mean'],
to_rgb=img_norm_cfg['to_rgb'],
ratio_range=(1, 2)),
dict(
type='MinIoURandomCrop',
min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
min_crop_size=0.3),
dict(type='Resize', img_scale=[(320, 320), (416, 416)], keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(416, 416),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
121 changes: 121 additions & 0 deletions configs/yolo/yolov3_d53_mstrain-608_273e_coco.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
_base_ = '../_base_/default_runtime.py'
# model settings
model = dict(
type='YOLOV3',
pretrained='open-mmlab://darknet53',
backbone=dict(type='Darknet', depth=53, out_indices=(3, 4, 5)),
neck=dict(
type='YOLOV3Neck',
num_scales=3,
in_channels=[1024, 512, 256],
out_channels=[512, 256, 128]),
bbox_head=dict(
type='YOLOV3Head',
num_classes=80,
in_channels=[512, 256, 128],
out_channels=[1024, 512, 256],
anchor_generator=dict(
type='YOLOAnchorGenerator',
base_sizes=[[(116, 90), (156, 198), (373, 326)],
[(30, 61), (62, 45), (59, 119)],
[(10, 13), (16, 30), (33, 23)]],
strides=[32, 16, 8]),
bbox_coder=dict(type='YOLOBBoxCoder'),
featmap_strides=[32, 16, 8],
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0,
reduction='sum'),
loss_conf=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0,
reduction='sum'),
loss_xy=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=2.0,
reduction='sum'),
loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')))
# training and testing settings
train_cfg = dict(
assigner=dict(
type='GridAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0))
test_cfg = dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
conf_thr=0.005,
nms=dict(type='nms', iou_thr=0.45),
max_per_img=100)
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='PhotoMetricDistortion'),
dict(
type='Expand',
mean=img_norm_cfg['mean'],
to_rgb=img_norm_cfg['to_rgb'],
ratio_range=(1, 2)),
dict(
type='MinIoURandomCrop',
min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
min_crop_size=0.3),
dict(type='Resize', img_scale=[(320, 320), (608, 608)], keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(608, 608),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0005)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=2000, # same as burn-in in darknet
warmup_ratio=0.1,
step=[218, 246])
# runtime settings
total_epochs = 273
evaluation = dict(interval=1, metric=['bbox'])
3 changes: 3 additions & 0 deletions docs/model_zoo.md
Original file line number Diff line number Diff line change
Expand Up @@ -147,6 +147,9 @@ Please refer to [Generalized Focal Loss](https://github.com/open-mmlab/mmdetecti
### CornerNet
Please refer to [CornerNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/cornernet) for details.

### YOLOv3
Please refer to [YOLOv3](https://github.com/open-mmlab/mmdetection/blob/master/configs/yolo) for details.

### Other datasets

We also benchmark some methods on [PASCAL VOC](https://github.com/open-mmlab/mmdetection/blob/master/configs/pascal_voc), [Cityscapes](https://github.com/open-mmlab/mmdetection/blob/master/configs/cityscapes) and [WIDER FACE](https://github.com/open-mmlab/mmdetection/blob/master/configs/wider_face).
Expand Down
5 changes: 3 additions & 2 deletions mmdet/core/anchor/__init__.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,11 @@
from .anchor_generator import AnchorGenerator, LegacyAnchorGenerator
from .anchor_generator import (AnchorGenerator, LegacyAnchorGenerator,
YOLOAnchorGenerator)
from .builder import ANCHOR_GENERATORS, build_anchor_generator
from .point_generator import PointGenerator
from .utils import anchor_inside_flags, calc_region, images_to_levels

__all__ = [
'AnchorGenerator', 'LegacyAnchorGenerator', 'anchor_inside_flags',
'PointGenerator', 'images_to_levels', 'calc_region',
'build_anchor_generator', 'ANCHOR_GENERATORS'
'build_anchor_generator', 'ANCHOR_GENERATORS', 'YOLOAnchorGenerator'
]
Loading

0 comments on commit dfbb6d6

Please sign in to comment.