Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Enhancement]: Refactor SSD #5291

Merged
merged 17 commits into from
Jun 22, 2021
10 changes: 7 additions & 3 deletions configs/_base_/models/ssd300.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,14 +5,18 @@
pretrained='open-mmlab://vgg16_caffe',
backbone=dict(
type='SSDVGG',
input_size=input_size,
depth=16,
with_last_pool=False,
ceil_mode=True,
out_indices=(3, 4),
out_feature_indices=(22, 34),
out_feature_indices=(22, 34)),
neck=dict(
type='SSDNeck',
in_channels=(512, 1024),
out_channels=(512, 1024, 512, 256, 256, 256),
level_strides=(2, 2, 1, 1),
level_paddings=(1, 1, 0, 0),
l2_norm_scale=20),
neck=None,
bbox_head=dict(
type='SSDHead',
in_channels=(512, 1024, 512, 256, 256, 256),
Expand Down
1 change: 0 additions & 1 deletion configs/pascal_voc/ssd512_voc0712.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
_base_ = 'ssd300_voc0712.py'
input_size = 512
model = dict(
backbone=dict(input_size=input_size),
bbox_head=dict(
in_channels=(512, 1024, 512, 256, 256, 256, 256),
anchor_generator=dict(
Expand Down
18 changes: 16 additions & 2 deletions configs/ssd/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,5 +17,19 @@

| Backbone | Size | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
| :------: | :---: | :---: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
| VGG16 | 300 | caffe | 120e | 10.2 | 43.7 | 25.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd/ssd300_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd300_coco/ssd300_coco_20200307-a92d2092.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd300_coco/ssd300_coco_20200307_174216.log.json) |
| VGG16 | 512 | caffe | 120e | 9.3 | 30.7 | 29.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd/ssd512_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20200308-038c5591.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20200308_134447.log.json) |
| VGG16 | 300 | caffe | 120e | 9.9 | 43.7 | 25.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd/ssd300_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd300_coco/ssd300_coco_20210604_193052-b61137df.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd300_coco/ssd300_coco_20210604_193052.log.json) |
| VGG16 | 512 | caffe | 120e | 19.4 | 30.7 | 29.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd/ssd512_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20210604_111835-d3eba047.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20210604_111835.log.json) |

## Notice

In v2.14.0, [PR5291](https://github.com/open-mmlab/mmdetection/pull/5291) refactored SSD neck and head for more
flexible usage. If users want to use the SSD checkpoint trained in the older versions, we provide a scripts
`tools/model_converters/upgrade_ssd_version.py` to convert the model weights.

```bash
python tools/model_converters/upgrade_ssd_version.py ${OLD_MODEL_PATH} ${NEW_MODEL_PATH}

```

- OLD_MODEL_PATH: the path to load the old version SSD model.
- NEW_MODEL_PATH: the path to save the converted model weights.
12 changes: 6 additions & 6 deletions configs/ssd/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -16,24 +16,24 @@ Models:
In Collection: SSD
Config: configs/ssd/ssd300_coco.py
Metadata:
Training Memory (GB): 10.2
Training Memory (GB): 9.9
inference time (s/im): 0.02288
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 25.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd300_coco/ssd300_coco_20200307-a92d2092.pth
box AP: 25.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd300_coco/ssd300_coco_20210604_193052-b61137df.pth

- Name: ssd512_coco
In Collection: SSD
Config: configs/ssd/ssd512_coco.py
Metadata:
Training Memory (GB): 9.3
Training Memory (GB): 19.4
inference time (s/im): 0.03257
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 29.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20200308-038c5591.pth
box AP: 29.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20210604_111835-d3eba047.pth
6 changes: 5 additions & 1 deletion configs/ssd/ssd512_coco.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,11 @@
_base_ = 'ssd300_coco.py'
input_size = 512
model = dict(
backbone=dict(input_size=input_size),
neck=dict(
out_channels=(512, 1024, 512, 256, 256, 256, 256),
level_strides=(2, 2, 2, 2, 1),
level_paddings=(1, 1, 1, 1, 1),
last_kernel_size=4),
bbox_head=dict(
in_channels=(512, 1024, 512, 256, 256, 256, 256),
anchor_generator=dict(
Expand Down
13 changes: 13 additions & 0 deletions docs/compatibility.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,18 @@
# Compatibility of MMDetection 2.x

## MMDetection 2.14.0

### SSD compatibility

In v2.14.0, to make SSD more flexible to use, [PR5291](https://github.com/open-mmlab/mmdetection/pull/5291) refactored its backbone, neck and head. The users can use the script `tools/model_converters/upgrade_ssd_version.py` to convert their models.

```bash
python tools/model_converters/upgrade_ssd_version.py ${OLD_MODEL_PATH} ${NEW_MODEL_PATH}
```

- OLD_MODEL_PATH: the path to load the old version SSD model.
- NEW_MODEL_PATH: the path to save the converted model weights.

## MMDetection 2.12.0

MMDetection is going through big refactoring for more general and convenient usages during the releases from v2.12.0 to v2.15.0 (maybe longer).
Expand Down
107 changes: 26 additions & 81 deletions mmdet/models/backbones/ssd_vgg.py
Original file line number Diff line number Diff line change
@@ -1,25 +1,32 @@
import warnings

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import VGG
from mmcv.runner import BaseModule, Sequential
from mmcv.runner import BaseModule

from ..builder import BACKBONES
from ..necks import ssd_neck


@BACKBONES.register_module()
class SSDVGG(VGG, BaseModule):
"""VGG Backbone network for single-shot-detection.

Args:
input_size (int): width and height of input, from {300, 512}.
depth (int): Depth of vgg, from {11, 13, 16, 19}.
with_last_pool (bool): Whether to add a pooling layer at the last
of the model
ceil_mode (bool): When True, will use `ceil` instead of `floor`
to compute the output shape.
out_indices (Sequence[int]): Output from which stages.
out_feature_indices (Sequence[int]): Output from which feature map.
pretrained (str, optional): model pretrained path. Default: None
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
input_size (int, optional): Deprecated argumment.
Width and height of input, from {300, 512}.
l2_norm_scale (float, optional) : Deprecated argumment.
L2 normalization layer init scale.

Example:
>>> self = SSDVGG(input_size=300, depth=11)
Expand All @@ -40,23 +47,21 @@ class SSDVGG(VGG, BaseModule):
}

def __init__(self,
input_size,
RangiLyu marked this conversation as resolved.
Show resolved Hide resolved
depth,
with_last_pool=False,
ceil_mode=True,
out_indices=(3, 4),
out_feature_indices=(22, 34),
l2_norm_scale=20.,
pretrained=None,
init_cfg=None):
init_cfg=None,
input_size=None,
l2_norm_scale=None):
# TODO: in_channels for mmcv.VGG
super(SSDVGG, self).__init__(
depth,
with_last_pool=with_last_pool,
ceil_mode=ceil_mode,
out_indices=out_indices)
assert input_size in (300, 512)
self.input_size = input_size

self.features.add_module(
str(len(self.features)),
Expand All @@ -72,18 +77,17 @@ def __init__(self,
str(len(self.features)), nn.ReLU(inplace=True))
self.out_feature_indices = out_feature_indices

self.inplanes = 1024
self.extra = self._make_extra_layers(self.extra_setting[input_size])
self.l2_norm = L2Norm(
self.features[out_feature_indices[0] - 1].out_channels,
l2_norm_scale)

assert not (init_cfg and pretrained), \
'init_cfg and pretrained cannot be setting at the same time'
if isinstance(pretrained, str):
warnings.warn('DeprecationWarning: pretrained is deprecated, '
'please use "init_cfg" instead')
self.init_cfg = [dict(type='Pretrained', checkpoint=pretrained)]
if input_size is not None:
warnings.warn('DeprecationWarning: input_size is deprecated')
if l2_norm_scale is not None:
warnings.warn('DeprecationWarning: l2_norm_scale in VGG is '
'deprecated, it has been moved to SSDNeck.')
elif pretrained is None:
if init_cfg is None:
self.init_cfg = [
Expand All @@ -94,18 +98,6 @@ def __init__(self,
else:
raise TypeError('pretrained must be a str or None')

if init_cfg is None:
self.init_cfg += [
dict(
type='Xavier',
distribution='uniform',
override=dict(name='extra')),
dict(
type='Constant',
val=self.l2_norm.scale,
override=dict(name='l2_norm'))
]

def init_weights(self, pretrained=None):
super(VGG, self).init_weights()

Expand All @@ -116,64 +108,17 @@ def forward(self, x):
x = layer(x)
if i in self.out_feature_indices:
outs.append(x)
for i, layer in enumerate(self.extra):
x = F.relu(layer(x), inplace=True)
if i % 2 == 1:
outs.append(x)
outs[0] = self.l2_norm(outs[0])

if len(outs) == 1:
return outs[0]
else:
return tuple(outs)

def _make_extra_layers(self, outplanes):
layers = []
kernel_sizes = (1, 3)
num_layers = 0
outplane = None
for i in range(len(outplanes)):
if self.inplanes == 'S':
self.inplanes = outplane
continue
k = kernel_sizes[num_layers % 2]
if outplanes[i] == 'S':
outplane = outplanes[i + 1]
conv = nn.Conv2d(
self.inplanes, outplane, k, stride=2, padding=1)
else:
outplane = outplanes[i]
conv = nn.Conv2d(
self.inplanes, outplane, k, stride=1, padding=0)
layers.append(conv)
self.inplanes = outplanes[i]
num_layers += 1
if self.input_size == 512:
layers.append(nn.Conv2d(self.inplanes, 256, 4, padding=1))

return Sequential(*layers)

class L2Norm(ssd_neck.L2Norm):

class L2Norm(nn.Module):
RangiLyu marked this conversation as resolved.
Show resolved Hide resolved

def __init__(self, n_dims, scale=20., eps=1e-10):
"""L2 normalization layer.

Args:
n_dims (int): Number of dimensions to be normalized
scale (float, optional): Defaults to 20..
eps (float, optional): Used to avoid division by zero.
Defaults to 1e-10.
"""
super(L2Norm, self).__init__()
self.n_dims = n_dims
self.weight = nn.Parameter(torch.Tensor(self.n_dims))
self.eps = eps
self.scale = scale

def forward(self, x):
"""Forward function."""
# normalization layer convert to FP32 in FP16 training
x_float = x.float()
norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps
return (self.weight[None, :, None, None].float().expand_as(x_float) *
x_float / norm).type_as(x)
def __init__(self, **kwargs):
super(L2Norm, self).__init__(**kwargs)
warnings.warn('DeprecationWarning: L2Norm in ssd_vgg.py '
'is deprecated, please use L2Norm in '
'mmdet/models/necks/ssd_neck.py instead')
Loading