Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add unit test for textsnake #61

Merged
merged 1 commit into from
Apr 13, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
103 changes: 52 additions & 51 deletions tests/test_models/test_detector.py
Original file line number Diff line number Diff line change
Expand Up @@ -316,54 +316,55 @@ def test_dbnet(cfg_file):
detector.show_result(img, results)


# @pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
# @pytest.mark.parametrize(
# 'cfg_file', ['textdet/textsnake/'
# 'textsnake_r50_fpn_unet_1200e_ctw1500.py'])
# def test_textsnake(cfg_file):
# model = _get_detector_cfg(cfg_file)
# model['pretrained'] = None
# model['backbone']['norm_cfg']['type'] = 'BN'

# from mmocr.models import build_detector
# detector = build_detector(model)
# detector = detector.cuda()
# input_shape = (1, 3, 64, 64)
# num_kernels = 1
# mm_inputs = _demo_mm_inputs(num_kernels, input_shape)

# imgs = mm_inputs.pop('imgs')
# imgs = imgs.cuda()
# img_metas = mm_inputs.pop('img_metas')
# gt_text_mask = mm_inputs.pop('gt_text_mask')
# gt_center_region_mask = mm_inputs.pop('gt_center_region_mask')
# gt_mask = mm_inputs.pop('gt_mask')
# gt_radius_map = mm_inputs.pop('gt_radius_map')
# gt_sin_map = mm_inputs.pop('gt_sin_map')
# gt_cos_map = mm_inputs.pop('gt_cos_map')

# # Test forward train
# losses = detector.forward(
# imgs,
# img_metas,
# gt_text_mask=gt_text_mask,
# gt_center_region_mask=gt_center_region_mask,
# gt_mask=gt_mask,
# gt_radius_map=gt_radius_map,
# gt_sin_map=gt_sin_map,
# gt_cos_map=gt_cos_map)
# assert isinstance(losses, dict)

# # Test forward test
# with torch.no_grad():
# img_list = [g[None, :] for g in imgs]
# batch_results = []
# for one_img, one_meta in zip(img_list, img_metas):
# result = detector.forward([one_img], [[one_meta]],
# return_loss=False)
# batch_results.append(result)

# # Test show result
# results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]}
# img = np.random.rand(5, 5)
# detector.show_result(img, results)
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
@pytest.mark.parametrize(
'cfg_file',
['textdet/textsnake/'
'textsnake_r50_fpn_unet_1200e_ctw1500.py'])
def test_textsnake(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
model['backbone']['norm_cfg']['type'] = 'BN'

from mmocr.models import build_detector
detector = build_detector(model)
detector = detector.cuda()
input_shape = (1, 3, 64, 64)
num_kernels = 1
mm_inputs = _demo_mm_inputs(num_kernels, input_shape)

imgs = mm_inputs.pop('imgs')
imgs = imgs.cuda()
img_metas = mm_inputs.pop('img_metas')
gt_text_mask = mm_inputs.pop('gt_text_mask')
gt_center_region_mask = mm_inputs.pop('gt_center_region_mask')
gt_mask = mm_inputs.pop('gt_mask')
gt_radius_map = mm_inputs.pop('gt_radius_map')
gt_sin_map = mm_inputs.pop('gt_sin_map')
gt_cos_map = mm_inputs.pop('gt_cos_map')

# Test forward train
losses = detector.forward(
imgs,
img_metas,
gt_text_mask=gt_text_mask,
gt_center_region_mask=gt_center_region_mask,
gt_mask=gt_mask,
gt_radius_map=gt_radius_map,
gt_sin_map=gt_sin_map,
gt_cos_map=gt_cos_map)
assert isinstance(losses, dict)

# Test forward test
# with torch.no_grad():
# img_list = [g[None, :] for g in imgs]
# batch_results = []
# for one_img, one_meta in zip(img_list, img_metas):
# result = detector.forward([one_img], [[one_meta]],
# return_loss=False)
# batch_results.append(result)

# Test show result
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]}
img = np.random.rand(5, 5)
detector.show_result(img, results)