Skip to content

Commit

Permalink
[Feature] New Codec for IPR, a wrapper for multi task losses (#1628)
Browse files Browse the repository at this point in the history
Co-authored-by: Yining Li <liyining0712@gmail.com>
  • Loading branch information
Tau-J and ly015 authored Sep 13, 2022
1 parent 2a3a279 commit 490511e
Show file tree
Hide file tree
Showing 42 changed files with 1,586 additions and 664 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
_base_ = ['../../../_base_/default_runtime.py']

# runtime
train_cfg = dict(max_epochs=210, val_interval=10)

# optimizer
optim_wrapper = dict(optimizer=dict(
type='Adam',
lr=5e-4,
))

# learning policy
param_scheduler = [
dict(
type='LinearLR', begin=0, end=500, start_factor=0.001,
by_epoch=False), # warm-up
dict(
type='MultiStepLR',
begin=0,
end=210,
milestones=[170, 200],
gamma=0.1,
by_epoch=True)
]

# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=512)

# hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater'))

# codec settings
codec = dict(
type='IntegralRegressionLabel',
input_size=(256, 256),
heatmap_size=(64, 64),
sigma=2.0,
normalize=True)

# model settings
model = dict(
type='TopdownPoseEstimator',
data_preprocessor=dict(
type='PoseDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(
type='ResNet',
depth=50,
),
head=dict(
type='DSNTHead',
in_channels=2048,
in_featuremap_size=(8, 8),
num_joints=17,
loss=dict(
type='MultipleLossWrapper',
losses=[
dict(type='SmoothL1Loss', use_target_weight=True),
dict(type='KeypointMSELoss', use_target_weight=True)
]),
decoder=codec),
test_cfg=dict(
flip_test=True,
shift_coords=True,
shift_heatmap=True,
),
init_cfg=dict(
type='Pretrained',
checkpoint='https://download.openmmlab.com/mmpose/'
'pretrain_models/td-hm_res50_8xb64-210e_coco-256x192.pth'))

# base dataset settings
dataset_type = 'CocoDataset'
data_mode = 'topdown'
data_root = 'data/coco/'

file_client_args = dict(backend='disk')

# pipelines
train_pipeline = [
dict(type='LoadImage', file_client_args=file_client_args),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(type='RandomBBoxTransform'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(
type='GenerateTarget',
target_type='heatmap+keypoint_label',
encoder=codec),
dict(type='PackPoseInputs')
]
test_pipeline = [
dict(type='LoadImage', file_client_args=file_client_args),
dict(type='GetBBoxCenterScale'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='PackPoseInputs')
]

# data loaders
train_dataloader = dict(
batch_size=64,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/person_keypoints_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=train_pipeline,
))
val_dataloader = dict(
batch_size=32,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/person_keypoints_val2017.json',
bbox_file=f'{data_root}person_detection_results/'
'COCO_val2017_detections_AP_H_56_person.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=test_pipeline,
))
test_dataloader = val_dataloader

# evaluators
val_evaluator = dict(
type='CocoMetric',
ann_file=f'{data_root}annotations/person_keypoints_val2017.json')
test_evaluator = val_evaluator
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
_base_ = ['../../../_base_/default_runtime.py']

# runtime
train_cfg = dict(max_epochs=210, val_interval=10)

# optimizer
optim_wrapper = dict(optimizer=dict(
type='Adam',
lr=5e-4,
))

# learning policy
param_scheduler = [
dict(
type='LinearLR', begin=0, end=500, start_factor=0.001,
by_epoch=False), # warm-up
dict(
type='MultiStepLR',
begin=0,
end=210,
milestones=[170, 200],
gamma=0.1,
by_epoch=True)
]

# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=512)

# hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater'))

# codec settings
codec = dict(
type='IntegralRegressionLabel',
input_size=(256, 256),
heatmap_size=(64, 64),
sigma=2.0,
normalize=True)

# model settings
model = dict(
type='TopdownPoseEstimator',
data_preprocessor=dict(
type='PoseDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(type='ResNet', depth=50),
head=dict(
type='DSNTHead',
in_channels=2048,
in_featuremap_size=(8, 8),
num_joints=17,
debias=True,
beta=10.,
loss=dict(
type='MultipleLossWrapper',
losses=[
dict(type='SmoothL1Loss', use_target_weight=True),
dict(type='JSDiscretLoss', use_target_weight=True)
]),
decoder=codec),
test_cfg=dict(
flip_test=True,
shift_coords=True,
shift_heatmap=True,
),
init_cfg=dict(
type='Pretrained',
checkpoint='https://download.openmmlab.com/mmpose/'
'pretrain_models/td-hm_res50_8xb64-210e_coco-256x192.pth'))

# base dataset settings
dataset_type = 'CocoDataset'
data_mode = 'topdown'
data_root = 'data/coco/'

file_client_args = dict(backend='disk')

# pipelines
train_pipeline = [
dict(type='LoadImage', file_client_args=file_client_args),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(type='RandomBBoxTransform'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(
type='GenerateTarget',
target_type='heatmap+keypoint_label',
encoder=codec),
dict(type='PackPoseInputs')
]
test_pipeline = [
dict(type='LoadImage', file_client_args=file_client_args),
dict(type='GetBBoxCenterScale'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='PackPoseInputs')
]

# data loaders
train_dataloader = dict(
batch_size=64,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/person_keypoints_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=train_pipeline,
))
val_dataloader = dict(
batch_size=32,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/person_keypoints_val2017.json',
bbox_file=f'{data_root}person_detection_results/'
'COCO_val2017_detections_AP_H_56_person.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=test_pipeline,
))
test_dataloader = val_dataloader

# evaluators
val_evaluator = dict(
type='CocoMetric',
ann_file=f'{data_root}annotations/person_keypoints_val2017.json')
test_evaluator = val_evaluator
Loading

0 comments on commit 490511e

Please sign in to comment.