-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
14 changed files
with
1,403 additions
and
2 deletions.
There are no files selected for viewing
151 changes: 151 additions & 0 deletions
151
...ody_2d_keypoint/topdown_heatmap/coco/td-hm_ViTPose-base-simple_8xb64-210e_coco-256x192.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
_base_ = ['../../../_base_/default_runtime.py'] | ||
|
||
# runtime | ||
train_cfg = dict(max_epochs=210, val_interval=10) | ||
|
||
# optimizer | ||
custom_imports = dict( | ||
imports=['mmpose.engine.optim_wrappers.layer_decay_optim_wrapper'], | ||
allow_failed_imports=False) | ||
|
||
optim_wrapper = dict( | ||
optimizer=dict( | ||
type='AdamW', lr=5e-4, betas=(0.9, 0.999), weight_decay=0.1), | ||
paramwise_cfg=dict( | ||
num_layers=12, | ||
layer_decay_rate=0.75, | ||
custom_keys={ | ||
'bias': dict(decay_multi=0.0), | ||
'pos_embed': dict(decay_mult=0.0), | ||
'relative_position_bias_table': dict(decay_mult=0.0), | ||
'norm': dict(decay_mult=0.0), | ||
}, | ||
), | ||
constructor='LayerDecayOptimWrapperConstructor', | ||
clip_grad=dict(max_norm=1., norm_type=2), | ||
) | ||
|
||
# learning policy | ||
param_scheduler = [ | ||
dict( | ||
type='LinearLR', begin=0, end=500, start_factor=0.001, | ||
by_epoch=False), # warm-up | ||
dict( | ||
type='MultiStepLR', | ||
begin=0, | ||
end=210, | ||
milestones=[170, 200], | ||
gamma=0.1, | ||
by_epoch=True) | ||
] | ||
|
||
# automatically scaling LR based on the actual training batch size | ||
auto_scale_lr = dict(base_batch_size=512) | ||
|
||
# hooks | ||
default_hooks = dict( | ||
checkpoint=dict(save_best='coco/AP', rule='greater', max_keep_ckpts=1)) | ||
|
||
# codec settings | ||
codec = dict( | ||
type='UDPHeatmap', input_size=(192, 256), heatmap_size=(48, 64), sigma=2) | ||
|
||
# model settings | ||
model = dict( | ||
type='TopdownPoseEstimator', | ||
data_preprocessor=dict( | ||
type='PoseDataPreprocessor', | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
bgr_to_rgb=True), | ||
backbone=dict( | ||
type='mmcls.VisionTransformer', | ||
arch='base', | ||
img_size=(256, 192), | ||
patch_size=16, | ||
qkv_bias=True, | ||
drop_path_rate=0.3, | ||
with_cls_token=False, | ||
output_cls_token=False, | ||
patch_cfg=dict(padding=2), | ||
init_cfg=dict( | ||
type='Pretrained', | ||
checkpoint='pretrained/mae_pretrain_vit_base.pth'), | ||
), | ||
head=dict( | ||
type='HeatmapHead', | ||
in_channels=768, | ||
out_channels=17, | ||
deconv_out_channels=[], | ||
deconv_kernel_sizes=[], | ||
loss=dict(type='KeypointMSELoss', use_target_weight=True), | ||
decoder=codec, | ||
extra=dict(upsample=4, final_conv_kernel=3), | ||
), | ||
test_cfg=dict( | ||
flip_test=True, | ||
flip_mode='heatmap', | ||
shift_heatmap=False, | ||
)) | ||
|
||
# base dataset settings | ||
data_root = 'data/coco/' | ||
dataset_type = 'CocoDataset' | ||
data_mode = 'topdown' | ||
|
||
# pipelines | ||
train_pipeline = [ | ||
dict(type='LoadImage', file_client_args={{_base_.file_client_args}}), | ||
dict(type='GetBBoxCenterScale'), | ||
dict(type='RandomFlip', direction='horizontal'), | ||
dict(type='RandomHalfBody'), | ||
dict(type='RandomBBoxTransform'), | ||
dict(type='TopdownAffine', input_size=codec['input_size'], use_udp=True), | ||
dict(type='GenerateTarget', encoder=codec), | ||
dict(type='PackPoseInputs') | ||
] | ||
val_pipeline = [ | ||
dict(type='LoadImage', file_client_args={{_base_.file_client_args}}), | ||
dict(type='GetBBoxCenterScale'), | ||
dict(type='TopdownAffine', input_size=codec['input_size'], use_udp=True), | ||
dict(type='PackPoseInputs') | ||
] | ||
|
||
# data loaders | ||
train_dataloader = dict( | ||
batch_size=64, | ||
num_workers=4, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=True), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='annotations/person_keypoints_train2017.json', | ||
data_prefix=dict(img='train2017/'), | ||
pipeline=train_pipeline, | ||
)) | ||
val_dataloader = dict( | ||
batch_size=32, | ||
num_workers=4, | ||
persistent_workers=True, | ||
drop_last=False, | ||
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='annotations/person_keypoints_val2017.json', | ||
bbox_file='data/coco/person_detection_results/' | ||
'COCO_val2017_detections_AP_H_56_person.json', | ||
data_prefix=dict(img='val2017/'), | ||
test_mode=True, | ||
pipeline=val_pipeline, | ||
)) | ||
test_dataloader = val_dataloader | ||
|
||
# evaluators | ||
val_evaluator = dict( | ||
type='CocoMetric', | ||
ann_file=data_root + 'annotations/person_keypoints_val2017.json') | ||
test_evaluator = val_evaluator |
149 changes: 149 additions & 0 deletions
149
configs/body_2d_keypoint/topdown_heatmap/coco/td-hm_ViTPose-base_8xb64-210e_coco-256x192.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
_base_ = ['../../../_base_/default_runtime.py'] | ||
|
||
# runtime | ||
train_cfg = dict(max_epochs=210, val_interval=10) | ||
|
||
# optimizer | ||
custom_imports = dict( | ||
imports=['mmpose.engine.optim_wrappers.layer_decay_optim_wrapper'], | ||
allow_failed_imports=False) | ||
|
||
optim_wrapper = dict( | ||
optimizer=dict( | ||
type='AdamW', lr=5e-4, betas=(0.9, 0.999), weight_decay=0.1), | ||
paramwise_cfg=dict( | ||
num_layers=12, | ||
layer_decay_rate=0.75, | ||
custom_keys={ | ||
'bias': dict(decay_multi=0.0), | ||
'pos_embed': dict(decay_mult=0.0), | ||
'relative_position_bias_table': dict(decay_mult=0.0), | ||
'norm': dict(decay_mult=0.0), | ||
}, | ||
), | ||
constructor='LayerDecayOptimWrapperConstructor', | ||
clip_grad=dict(max_norm=1., norm_type=2), | ||
) | ||
|
||
# learning policy | ||
param_scheduler = [ | ||
dict( | ||
type='LinearLR', begin=0, end=500, start_factor=0.001, | ||
by_epoch=False), # warm-up | ||
dict( | ||
type='MultiStepLR', | ||
begin=0, | ||
end=210, | ||
milestones=[170, 200], | ||
gamma=0.1, | ||
by_epoch=True) | ||
] | ||
|
||
# automatically scaling LR based on the actual training batch size | ||
auto_scale_lr = dict(base_batch_size=512) | ||
|
||
# hooks | ||
default_hooks = dict( | ||
checkpoint=dict(save_best='coco/AP', rule='greater', max_keep_ckpts=1)) | ||
|
||
# codec settings | ||
codec = dict( | ||
type='UDPHeatmap', input_size=(192, 256), heatmap_size=(48, 64), sigma=2) | ||
|
||
# model settings | ||
model = dict( | ||
type='TopdownPoseEstimator', | ||
data_preprocessor=dict( | ||
type='PoseDataPreprocessor', | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
bgr_to_rgb=True), | ||
backbone=dict( | ||
type='mmcls.VisionTransformer', | ||
arch='base', | ||
img_size=(256, 192), | ||
patch_size=16, | ||
qkv_bias=True, | ||
drop_path_rate=0.3, | ||
with_cls_token=False, | ||
output_cls_token=False, | ||
patch_cfg=dict(padding=2), | ||
init_cfg=dict( | ||
type='Pretrained', | ||
checkpoint='pretrained/mae_pretrain_vit_base.pth'), | ||
), | ||
head=dict( | ||
type='HeatmapHead', | ||
in_channels=768, | ||
out_channels=17, | ||
deconv_out_channels=(256, 256), | ||
deconv_kernel_sizes=(4, 4), | ||
loss=dict(type='KeypointMSELoss', use_target_weight=True), | ||
decoder=codec), | ||
test_cfg=dict( | ||
flip_test=True, | ||
flip_mode='heatmap', | ||
shift_heatmap=False, | ||
)) | ||
|
||
# base dataset settings | ||
data_root = 'data/coco/' | ||
dataset_type = 'CocoDataset' | ||
data_mode = 'topdown' | ||
|
||
# pipelines | ||
train_pipeline = [ | ||
dict(type='LoadImage', file_client_args={{_base_.file_client_args}}), | ||
dict(type='GetBBoxCenterScale'), | ||
dict(type='RandomFlip', direction='horizontal'), | ||
dict(type='RandomHalfBody'), | ||
dict(type='RandomBBoxTransform'), | ||
dict(type='TopdownAffine', input_size=codec['input_size'], use_udp=True), | ||
dict(type='GenerateTarget', encoder=codec), | ||
dict(type='PackPoseInputs') | ||
] | ||
val_pipeline = [ | ||
dict(type='LoadImage', file_client_args={{_base_.file_client_args}}), | ||
dict(type='GetBBoxCenterScale'), | ||
dict(type='TopdownAffine', input_size=codec['input_size'], use_udp=True), | ||
dict(type='PackPoseInputs') | ||
] | ||
|
||
# data loaders | ||
train_dataloader = dict( | ||
batch_size=64, | ||
num_workers=4, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=True), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='annotations/person_keypoints_train2017.json', | ||
data_prefix=dict(img='train2017/'), | ||
pipeline=train_pipeline, | ||
)) | ||
val_dataloader = dict( | ||
batch_size=32, | ||
num_workers=4, | ||
persistent_workers=True, | ||
drop_last=False, | ||
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='annotations/person_keypoints_val2017.json', | ||
bbox_file='data/coco/person_detection_results/' | ||
'COCO_val2017_detections_AP_H_56_person.json', | ||
data_prefix=dict(img='val2017/'), | ||
test_mode=True, | ||
pipeline=val_pipeline, | ||
)) | ||
test_dataloader = val_dataloader | ||
|
||
# evaluators | ||
val_evaluator = dict( | ||
type='CocoMetric', | ||
ann_file=data_root + 'annotations/person_keypoints_val2017.json') | ||
test_evaluator = val_evaluator |
Oops, something went wrong.