Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MMSIG] Support badcase analyze in test #2584

Merged
merged 21 commits into from
Aug 4, 2023
Merged
Show file tree
Hide file tree
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
_base_ = ['../../../_base_/default_runtime.py']

# runtime
train_cfg = dict(max_epochs=210, val_interval=10)

# optimizer
optim_wrapper = dict(optimizer=dict(
type='Adam',
lr=5e-4,
))

# learning policy
param_scheduler = [
dict(
type='LinearLR', begin=0, end=500, start_factor=0.001,
by_epoch=False), # warm-up
dict(
type='MultiStepLR',
begin=0,
end=210,
milestones=[170, 200],
gamma=0.1,
by_epoch=True)
]

# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=512)

# hooks
default_hooks = dict(checkpoint=dict(save_best='PCK', rule='greater'),
badcase=dict(type="BadCaseAnalyzeHook",
# metric_type="loss",
metric_type="accuracy",
show=True,
badcase_thr=100,
out_dir='badcase'))
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

How about moving badcase into default_runtime.py and disable by defaults? In this way, there is no need to add such a new config

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sounds fine to me. The usage samples can be added to the documentation.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is the config of badcase in experiment config files able to overwrite that in default_runtime.py?


# codec settings
codec = dict(
type='MSRAHeatmap', input_size=(256, 256), heatmap_size=(64, 64), sigma=2)

# model settings
model = dict(
type='TopdownPoseEstimator',
data_preprocessor=dict(
type='PoseDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(
type='MobileNetV2',
widen_factor=1.,
out_indices=(7, ),
init_cfg=dict(type='Pretrained', checkpoint='mmcls://mobilenet_v2'),
),
head=dict(
type='HeatmapHead',
in_channels=1280,
out_channels=16,
loss=dict(type='KeypointMSELoss', use_target_weight=True),
decoder=codec),
test_cfg=dict(
flip_test=True,
flip_mode='heatmap',
shift_heatmap=True,
))

# base dataset settings
dataset_type = 'MpiiDataset'
data_mode = 'topdown'
data_root = 'data/mpii/'

# pipelines
train_pipeline = [
dict(type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomBBoxTransform', shift_prob=0),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='GenerateTarget', encoder=codec),
dict(type='PackPoseInputs')
]
val_pipeline = [
dict(type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='PackPoseInputs')
]

# data loaders
train_dataloader = dict(
batch_size=64,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/mpii_train.json',
data_prefix=dict(img='images/'),
pipeline=train_pipeline,
))
val_dataloader = dict(
batch_size=32,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/mpii_val.json',
headbox_file='data/mpii/annotations/mpii_gt_val.mat',
data_prefix=dict(img='images/'),
test_mode=True,
pipeline=val_pipeline,
))
test_dataloader = val_dataloader

# evaluators
val_evaluator = dict(type='MpiiPCKAccuracy')
test_evaluator = val_evaluator
3 changes: 2 additions & 1 deletion mmpose/engine/hooks/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .ema_hook import ExpMomentumEMA
from .visualization_hook import PoseVisualizationHook
from .badcase_hook import BadCaseAnalyzeHook

__all__ = ['PoseVisualizationHook', 'ExpMomentumEMA']
__all__ = ['PoseVisualizationHook', 'ExpMomentumEMA', 'BadCaseAnalyzeHook']
222 changes: 222 additions & 0 deletions mmpose/engine/hooks/badcase_hook.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,222 @@
# Copyright (c) OpenMMLab. All rights reserved.
import os
import json
import torch
import warnings
import numpy as np
from typing import Optional, Sequence, Dict

import mmcv
import mmengine
import mmengine.fileio as fileio
from mmengine.config import ConfigDict
from mmengine.hooks import Hook
from mmengine.runner import Runner
from mmengine.visualization import Visualizer

from mmpose.registry import HOOKS, MODELS, METRICS
from mmpose.structures import PoseDataSample, merge_data_samples


@HOOKS.register_module()
class BadCaseAnalyzeHook(Hook):
Tau-J marked this conversation as resolved.
Show resolved Hide resolved
"""Bad Case Analyze Hook. Used to visualize validation and
testing process prediction results.

In the testing phase:

1. If ``show`` is True, it means that only the prediction results are
visualized without storing data, so ``vis_backends`` needs to
be excluded.
2. If ``out_dir`` is specified, it means that the prediction results
need to be saved to ``out_dir``. In order to avoid vis_backends
also storing data, so ``vis_backends`` needs to be excluded.
3. ``vis_backends`` takes effect if the user does not specify ``show``
and `out_dir``. You can set ``vis_backends`` to WandbVisBackend or
TensorboardVisBackend to store the prediction result in Wandb or
Tensorboard.

Args:
enable (bool): whether to draw prediction results. If it is False,
it means that no drawing will be done. Defaults to False.
show (bool): Whether to display the drawn image. Default to False.
wait_time (float): The interval of show (s). Defaults to 0.
interval (int): The interval of visualization. Defaults to 50.
kpt_thr (float): The threshold to visualize the keypoints. Defaults to 0.3.
out_dir (str, optional): directory where painted images
will be saved in testing process.
backend_args (dict, optional): Arguments to instantiate the preifx of
uri corresponding backend. Defaults to None.
metric_type (str): the mretic type to decide a badcase, loss or accuracy.
metric (ConfigDict): The config of metric.
metric_key (str): key of needed metric value in the return dict from class 'metric'.
badcase_thr (float): min loss or max accuracy for a badcase.
"""

def __init__(
self,
enable: bool = False,
show: bool = False,
wait_time: float = 0.,
interval: int = 50,
kpt_thr: float = 0.3,
out_dir: Optional[str] = None,
backend_args: Optional[dict] = None,
metric_type: str = 'loss',
metric: ConfigDict = ConfigDict(type='KeypointMSELoss'),
metric_key: str = 'PCK',
badcase_thr: float = 5,
):
self._visualizer: Visualizer = Visualizer.get_current_instance()
self.interval = interval
self.kpt_thr = kpt_thr
self.show = show
if self.show:
# No need to think about vis backends.
self._visualizer._vis_backends = {}
warnings.warn('The show is True, it means that only '
'the prediction results are visualized '
'without storing data, so vis_backends '
'needs to be excluded.')

self.wait_time = wait_time
self.enable = enable
self.out_dir = out_dir
self._test_index = 0
self.backend_args = backend_args

self.metric_type = metric_type
if metric_type not in ['loss', 'accuracy']:
raise KeyError(
f'The badcase metric type {metric_type} is not supported by '
f"{self.__class__.__name__}. Should be one of 'loss', "
f"'accuracy', but got {metric_type}.")
self.metric = MODELS.build(metric) if metric_type == 'loss'\
else METRICS.build(metric)
self.metric_name = metric.type if metric_type == 'loss'\
else metric_key
self.metric_key = metric_key
self.badcase_thr = badcase_thr
self.results = []

def check_badcase(self, data_batch, data_sample):
"""Check whether the sample is a badcase

Args:
data_batch (Sequence[dict]): A batch of data
from the dataloader.
data_samples (Sequence[dict]): A batch of outputs from
the model.
Return:
is_badcase (bool): whether the sample is a badcase or not
metric_value (float)
"""
if self.metric_type == 'loss':
gts = data_sample.gt_instances.keypoints
preds = data_sample.pred_instances.keypoints
Indigo6 marked this conversation as resolved.
Show resolved Hide resolved
with torch.no_grad():
metric_value = self.metric(torch.tensor(preds),
torch.tensor(gts)).item()
is_badcase = metric_value >= self.badcase_thr
else:
self.metric.process([data_batch], [data_sample.to_dict()])
metric_value = self.metric.evaluate(1)[self.metric_key]
is_badcase = metric_value <= self.badcase_thr
return is_badcase, metric_value

def after_test_iter(self, runner: Runner, batch_idx: int, data_batch: dict,
outputs: Sequence[PoseDataSample]) -> None:
"""Run after every testing iterations.

Args:
runner (:obj:`Runner`): The runner of the testing process.
batch_idx (int): The index of the current batch in the test loop.
data_batch (dict): Data from dataloader.
outputs (Sequence[:obj:`PoseDataSample`]): Outputs from model.
"""
if self.enable is False:
return

if self.out_dir is not None:
self.out_dir = os.path.join(runner.work_dir, runner.timestamp,
self.out_dir)
mmengine.mkdir_or_exist(self.out_dir)

self._visualizer.set_dataset_meta(runner.test_evaluator.dataset_meta)

for data_sample in outputs:
self._test_index += 1

img_path = data_sample.get('img_path')
img_bytes = fileio.get(img_path, backend_args=self.backend_args)
img = mmcv.imfrombytes(img_bytes, channel_order='rgb')
data_sample = merge_data_samples([data_sample])

is_badcase, metric_value = self.check_badcase(data_batch, data_sample)

if is_badcase:
img_name, postfix = os.path.basename(img_path).rsplit(
'.', 1)
bboxes = data_sample.gt_instances.bboxes.astype(int).tolist()
bbox_info = 'bbox' + str(bboxes)
metric_postfix = self.metric_name + str(round(metric_value, 2))

self.results.append({'img': img_name,
'bbox': bboxes,
self.metric_name: metric_value})

badcase_name = f'{img_name}_{bbox_info}_{metric_postfix}'

out_file = None
if self.out_dir is not None:
out_file = f'{badcase_name}.{postfix}'
out_file = os.path.join(self.out_dir, out_file)

# draw gt keypoints in blue color
self._visualizer.kpt_color = 'blue'
self._visualizer.link_color = 'blue'
Comment on lines +181 to +183
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
# draw gt keypoints in blue color
self._visualizer.kpt_color = 'blue'
self._visualizer.link_color = 'blue'
# draw gt keypoints in green color
self._visualizer.kpt_color = 'green'
self._visualizer.link_color = 'green'

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Um …… I suggest using blue for easy distinction

img_gt_drawn = self._visualizer.add_datasample(
badcase_name if self.show else 'test_img',
img,
data_sample=data_sample,
show=False,
draw_pred=False,
draw_gt=True,
draw_bbox=False,
draw_heatmap=False,
wait_time=self.wait_time,
kpt_thr=self.kpt_thr,
out_file=None,
step=self._test_index)
# draw pred keypoints in red color
self._visualizer.kpt_color = 'red'
self._visualizer.link_color = 'red'
self._visualizer.add_datasample(
badcase_name if self.show else 'test_img',
img_gt_drawn,
data_sample=data_sample,
show=self.show,
draw_pred=True,
draw_gt=False,
draw_bbox=True,
draw_heatmap=False,
wait_time=self.wait_time,
kpt_thr=self.kpt_thr,
out_file=out_file,
step=self._test_index)

def after_test_epoch(self,
runner,
metrics: Optional[Dict[str, float]] = None) -> None:
"""All subclasses should override this method, if they need any
operations after each test epoch.

Args:
runner (Runner): The runner of the testing process.
metrics (Dict[str, float], optional): Evaluation results of all
metrics on test dataset. The keys are the names of the
metrics, and the values are corresponding results.
"""
out_file = os.path.join(self.out_dir, 'results.json')
with open(out_file, 'w') as f:
json.dump(self.results, f)
3 changes: 2 additions & 1 deletion mmpose/visualization/opencv_backend_visualizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -358,7 +358,8 @@ def draw_lines(self,
**kwargs)

elif self.backend == 'opencv':

if isinstance(colors, str):
colors = mmcv.color_val(colors)
Indigo6 marked this conversation as resolved.
Show resolved Hide resolved
self._image = cv2.line(
self._image, (x_datas[0], y_datas[0]),
(x_datas[1], y_datas[1]),
Expand Down
Loading