Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] Reset norm running stats after prepare_from_supernet #81

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions mmrazor/models/pruners/structure_pruning.py
Original file line number Diff line number Diff line change
Expand Up @@ -203,6 +203,8 @@ def prepare_from_supernet(self, supernet):

self.channel_spaces = self.build_channel_spaces(name2module)

self._reset_norm_running_stats(supernet)

@abstractmethod
def sample_subnet(self):
"""Sample a subnet from the supernet.
Expand Down Expand Up @@ -804,3 +806,11 @@ def concat_backward_parser(self, grad_fn, module2name, var2module,
if cur_path.pop(-1) != f'{name}_item_{i}':
print(f'{name}_item_{i}')
cur_path.pop(-1)

@staticmethod
def _reset_norm_running_stats(supernet):
from torch.nn.modules.batchnorm import _NormBase

for module in supernet.modules():
if isinstance(module, _NormBase):
module.reset_parameters()
58 changes: 58 additions & 0 deletions tests/test_models/test_pruner.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,10 @@ def test_ratio_pruner():
type='RatioPruner',
ratios=[1 / 8, 2 / 8, 3 / 8, 4 / 8, 5 / 8, 6 / 8, 7 / 8, 1.0])

_test_reset_bn_running_stats(architecture_cfg, pruner_cfg, False)
with pytest.raises(AssertionError):
_test_reset_bn_running_stats(architecture_cfg, pruner_cfg, True)

imgs = torch.randn(16, 3, 224, 224)
label = torch.randint(0, 1000, (16, ))

Expand Down Expand Up @@ -161,3 +165,57 @@ def test_ratio_pruner():
assert isinstance(subnet_dict, dict)
pruner.deploy_subnet(architecture, subnet_dict)
architecture.forward_dummy(imgs)


def _test_reset_bn_running_stats(architecture_cfg, pruner_cfg, should_fail):
import os
import random

import numpy as np

def set_seed(seed: int) -> None:
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)

output_list = []

def output_hook(self, input, output) -> None:
output_list.append(output)

set_seed(1024)

imgs = torch.randn(16, 3, 224, 224)

torch_rng_state = torch.get_rng_state()
np_rng_state = np.random.get_state()
random_rng_state = random.getstate()

architecture1 = ARCHITECTURES.build(architecture_cfg)
pruner1 = PRUNERS.build(pruner_cfg)
if should_fail:
pruner1._reset_norm_running_stats = lambda *_: None
set_seed(1)
pruner1.prepare_from_supernet(architecture1)
architecture1.model.head.fc.register_forward_hook(output_hook)
architecture1.eval()
architecture1(imgs, return_loss=False)

set_seed(1024)
torch.set_rng_state(torch_rng_state)
np.random.set_state(np_rng_state)
random.setstate(random_rng_state)

architecture2 = ARCHITECTURES.build(architecture_cfg)
pruner2 = PRUNERS.build(pruner_cfg)
if should_fail:
pruner2._reset_norm_running_stats = lambda *_: None
set_seed(2)
pruner2.prepare_from_supernet(architecture2)
architecture2.model.head.fc.register_forward_hook(output_hook)
architecture2.eval()
architecture2(imgs, return_loss=False)

assert torch.equal(output_list[0].norm(p='fro'),
output_list[1].norm(p='fro'))