Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Docs] Add Algorithm Metafiles #87

Merged
merged 8 commits into from
Mar 2, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 50 additions & 0 deletions configs/distill/cwd/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
Collections:
- Name: CWD
Metadata:
Training Data:
- Cityscapes
- COCO
Paper:
URL: https://arxiv.org/abs/2011.13256
Title: Channel-wise Knowledge Distillation for Dense Prediction
README: configs/distill/cwd/README.md
Code:
URL: https://github.com/open-mmlab/mmrazor/blob/v0.1.0/mmrazor/models/losses/cwd.py#L10
Version: v0.1.0
Converted From:
Code:
- https://github.com/pppppM/mmsegmentation-distiller
- https://github.com/pppppM/mmdetection-distiller
Models:
- Name: cwd_cls_head_pspnet_r101_d8_pspnet_r18_d8_512x1024_cityscapes_80k
In Collection: CWD
Metadata:
Location: cls head
Student: pspnet-r18-d8
Teacher: pspnet-r101-d8
Teacher Checkpoint: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.54
mIoU(S): 74.87
mIoU(T): 79.76
Config: configs/distill/cwd/cwd_cls_head_pspnet_r101_d8_pspnet_r18_d8_512x1024_cityscapes_80k.py
Weights: https://download.openmmlab.com/mmrazor/v0.1/distill/cwd/cwd_cls_head_pspnet_r101_d8_pspnet_r18_d8_512x1024_cityscapes_80k/cwd_cls_head_pspnet_r101_d8_pspnet_r18_d8_512x1024_cityscapes_80k_mIoU-75.54_20211222-3a26ee1c.pth
- Name: cwd_cls_head_gfl_r101_fpn_gfl_r50_fpn_1x_coco
In Collection: CWD
Metadata:
Location: cls head
Student: gfl-r50-fpn
Teacher: gfl-r101-fpn
Teacher Checkpoint: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126-dd12f847.pth
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.9
box AP(S): 40.2
box AP(T): 44.7
Config: configs/distill/cwd/cwd_cls_head_gfl_r101_fpn_gfl_r50_fpn_1x_coco.py
Weights: https://download.openmmlab.com/mmrazor/v0.1/distill/cwd/cwd_cls_head_gfl_r101_fpn_gfl_r50_fpn_1x_coco/cwd_cls_head_gfl_r101_fpn_gfl_r50_fpn_1x_coco_20211222-655dff39.pth
31 changes: 31 additions & 0 deletions configs/distill/wsld/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
Collections:
- Name: WSLD
Metadata:
Training Data:
- ImageNet-1k
Paper:
URL: https://arxiv.org/abs/2102.00650
Title: Rethinking Soft Labels for Knowledge Distillation:A Bias-Variance Tradeoff Perspective
README: configs/distill/wsld/README.md
Code:
URL: https://github.com/open-mmlab/mmrazor/blob/v0.1.0/mmrazor/models/losses/weighted_soft_label_distillation.py
Version: v0.1.0
Converted From:
Code: https://github.com/bellymonster/Weighted-Soft-Label-Distillation
Models:
- Name: wsld_cls_head_resnet34_resnet18_8xb32_in1k
In Collection: WSLD
Metadata:
Location: cls head
Student: R-18
Teacher: R-34
Teacher Checkpoint: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 71.54
Top 1 Accuracy:(S): 69.90
Top 1 Accuracy:(T): 73.62
Config: configs/distill/wsld/wsld_cls_head_resnet34_resnet18_8xb32_in1k.py
Weights: https://download.openmmlab.com/mmrazor/v0.1/distill/wsld/wsld_cls_head_resnet34_resnet18_8xb32_in1k/wsld_cls_head_resnet34_resnet18_8xb32_in1k_acc-71.54_20211222-91f28cf6.pth
28 changes: 28 additions & 0 deletions configs/nas/darts/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
Collections:
- Name: Darts
Metadata:
Training Data:
- CIFAR-10
Paper:
URL: https://arxiv.org/abs/1806.09055
Title: DARTS:Differentiable Architecture Search
README: configs/nas/darts/README.md
Code:
URL: https://github.com/open-mmlab/mmrazor/blob/v0.1.0/mmrazor/models/algorithms/darts.py
Version: v0.1.0
Converted From:
Code: https://github.com/quark0/darts
Models:
- Name: darts_subnetnet_1xb96_cifar10
In Collection: Darts
Metadata:
Params(M): 3.42
Mutable: https://download.openmmlab.com/mmrazor/v0.1/nas/darts/darts_subnetnet_1xb96_cifar10/darts_subnetnet_1xb96_cifar10_acc-97.32_20211222-e5727921_mutable_cfg.yaml
Results:
- Task: Image Classification
Dataset: CIFAR-10
Metrics:
Top 1 Accuracy: 97.32
Top 5 Accuracy: 99.94
Config: configs/nas/darts/darts_subnetnet_1xb96_cifar10.py
Weights: https://download.openmmlab.com/mmrazor/v0.1/nas/darts/darts_subnetnet_1xb96_cifar10/darts_subnetnet_1xb96_cifar10_acc-97.32_20211222-e5727921.pth
30 changes: 30 additions & 0 deletions configs/nas/detnas/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
Collections:
- Name: DetNAS
Metadata:
Training Data:
- ImageNet-1k
- COCO
Paper:
URL: https://arxiv.org/abs/1903.10979
Title: DetNAS:Backbone Search for Object Detection
README: configs/nas/detnas/README.md
Code:
URL: https://github.com/open-mmlab/mmrazor/blob/v0.1.0/mmrazor/models/algorithms/detnas.py
Version: v0.1.0
Converted From:
Code: https://github.com/megvii-model/DetNAS
Models:
- Name: detnas_subnet_frcnn_shufflenetv2_fpn_1x_coco
In Collection: DetNAS
Metadata:
FLOPs(Backbone): 340 MB
Params(Backbone): 3.35 MB
Supernet: FRCNN-ShuffleNetV2
Mutable: https://download.openmmlab.com/mmrazor/v0.1/nas/spos/spos_shufflenetv2_subnet_8xb128_in1k/spos_shufflenetv2_subnet_8xb128_in1k_flops_0.33M_acc_73.87_20211222-454627be_mutable_cfg.yaml
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.5
Config: configs/nas/detnas/detnas_subnet_frcnn_shufflenetv2_fpn_1x_coco.py
Weights: https://download.openmmlab.com/mmrazor/v0.1/nas/detnas/detnas_subnet_frcnn_shufflenetv2_fpn_1x_coco/detnas_subnet_frcnn_shufflenetv2_fpn_1x_coco_bbox_backbone_flops-0.34M_mAP-37.5_20211222-67fea61f_mutable_cfg.yaml
29 changes: 29 additions & 0 deletions configs/nas/spos/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
Collections:
- Name: SPOS
Metadata:
Training Data:
- ImageNet-1k
Paper:
URL: https://arxiv.org/abs/1904.00420
Title: Single Path One-Shot Neural Architecture Search with Uniform Sampling
README: configs/nas/spos/README.md
Code:
URL: https://github.com/open-mmlab/mmrazor/blob/v0.1.0/mmrazor/models/algorithms/spos.py
Version: v0.1.0
Converted From:
Code: https://github.com/megvii-model/SinglePathOneShot
Models:
- Name: spos_subnet_shufflenetv2_8xb128_in1k
In Collection: SPOS
Metadata:
FLOPs: 330 MB
Supernet: ShuffleNetV2
Mutable: https://download.openmmlab.com/mmrazor/v0.1/nas/spos/spos_shufflenetv2_subnet_8xb128_in1k/spos_shufflenetv2_subnet_8xb128_in1k_flops_0.33M_acc_73.87_20211222-454627be_mutable_cfg.yaml
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 73.87
Top 5 Accuracy: 91.60
Config: configs/nas/spos/spos_subnet_shufflenetv2_8xb128_in1k.py
Weights: https://download.openmmlab.com/mmrazor/v0.1/nas/spos/spos_shufflenetv2_subnet_8xb128_in1k/spos_shufflenetv2_subnet_8xb128_in1k_flops_0.33M_acc_73.87_20211222-1f0a0b4d.pth
60 changes: 60 additions & 0 deletions configs/pruning/autoslim/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
Collections:
- Name: AutoSlim
Metadata:
Training Data:
- ImageNet-1k
Paper:
URL: https://arxiv.org/abs/1903.11728
Title: AutoSlim:Towards One-Shot Architecture Search for Channel Numbers
README: configs/nas/spos/README.md
Code:
URL: https://github.com/open-mmlab/mmrazor/blob/v0.1.0/mmrazor/models/algorithms/autoslim.py
Version: v0.1.0
Converted From:
Code: https://github.com/JiahuiYu/slimmable_networks
Models:
- Name: autoslim_mbv2_subnet_8xb256_in1k
In Collection: AutoSlim
Metadata:
Flops(G): 0.53
Params(M): 6.5
Supernet: MobileNet v2(x1.5)
Channel: https://download.openmmlab.com/mmrazor/v0.1/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k/autoslim_mbv2_subnet_8xb256_in1k_flops-0.53M_acc-74.23_20211222-e5208bbd_channel_cfg.yaml
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 74.23
Top 5 Accuracy: 91.74
Config: configs/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k.py
Weights: https://download.openmmlab.com/mmrazor/v0.1/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k/autoslim_mbv2_subnet_8xb256_in1k_flops-0.53M_acc-74.23_20211222-e5208bbd.pth
- Name: autoslim_mbv2_subnet_8xb256_in1k
In Collection: AutoSlim
Metadata:
Flops(G): 0.32
Params(M): 5.77
Supernet: MobileNet v2(x1.5)
Channel: https://download.openmmlab.com/mmrazor/v0.1/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k/autoslim_mbv2_subnet_8xb256_in1k_flops-0.32M_acc-72.73_20211222-b5b0b33c_channel_cfg.yaml
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 72.73
Top 5 Accuracy: 90.83
Config: configs/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k.py
Weights: https://download.openmmlab.com/mmrazor/v0.1/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k/autoslim_mbv2_subnet_8xb256_in1k_flops-0.32M_acc-72.73_20211222-b5b0b33c.pth
- Name: autoslim_mbv2_subnet_8xb256_in1k
In Collection: AutoSlim
Metadata:
Flops(G): 0.22
Params(M): 4.13
Supernet: MobileNet v2(x1.5)
Channel: https://download.openmmlab.com/mmrazor/v0.1/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k/autoslim_mbv2_subnet_8xb256_in1k_flops-0.22M_acc-71.39_20211222-43117c7b_channel_cfg.yaml.?
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 74.23
Top 5 Accuracy: 91.74
Config: configs/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k.py
Weights: https://download.openmmlab.com/mmrazor/v0.1/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k/autoslim_mbv2_subnet_8xb256_in1k_flops-0.22M_acc-71.39_20211222-43117c7b.pth
7 changes: 7 additions & 0 deletions model-index.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
Import:
- configs/distill/cwd/metafile.yml
- configs/distill/wsld/metafile.yml
- configs/nas/darts/metafile.yml
- configs/nas/detnas/metafile.yml
- configs/nas/spos/metafile.yml
- configs/pruning/autoslim/metafile.yml