-
Notifications
You must be signed in to change notification settings - Fork 2.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7a0f45e
commit c2c7d00
Showing
3 changed files
with
215 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
"""Modified from | ||
https://github.com/JunMa11/SegLoss/blob/master/losses_pytorch/dice_loss.py#L333 | ||
(Apache-2.0 License)""" | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
from ..builder import LOSSES | ||
from .utils import get_class_weight, weighted_loss | ||
|
||
|
||
@weighted_loss | ||
def tversky_loss(pred, | ||
target, | ||
valid_mask, | ||
alpha=0.3, | ||
beta=0.7, | ||
smooth=1, | ||
class_weight=None, | ||
ignore_index=255): | ||
assert pred.shape[0] == target.shape[0] | ||
total_loss = 0 | ||
num_classes = pred.shape[1] | ||
for i in range(num_classes): | ||
if i != ignore_index: | ||
tversky_loss = binary_tversky_loss( | ||
pred[:, i], | ||
target[..., i], | ||
valid_mask=valid_mask, | ||
alpha=alpha, | ||
beta=beta, | ||
smooth=smooth) | ||
if class_weight is not None: | ||
tversky_loss *= class_weight[i] | ||
total_loss += tversky_loss | ||
return total_loss / num_classes | ||
|
||
|
||
@weighted_loss | ||
def binary_tversky_loss(pred, | ||
target, | ||
valid_mask, | ||
alpha=0.3, | ||
beta=0.7, | ||
smooth=1): | ||
assert pred.shape[0] == target.shape[0] | ||
pred = pred.reshape(pred.shape[0], -1) | ||
target = target.reshape(target.shape[0], -1) | ||
valid_mask = valid_mask.reshape(valid_mask.shape[0], -1) | ||
|
||
TP = torch.sum(torch.mul(pred, target) * valid_mask, dim=1) | ||
FP = torch.sum(torch.mul(pred, 1 - target) * valid_mask, dim=1) | ||
FN = torch.sum(torch.mul(1 - pred, target) * valid_mask, dim=1) | ||
tversky = (TP + smooth) / (TP + alpha * FP + beta * FN + smooth) | ||
|
||
return 1 - tversky | ||
|
||
|
||
@LOSSES.register_module() | ||
class TverskyLoss(nn.Module): | ||
"""TverskyLoss. This loss is proposed in `Tversky loss function for image | ||
segmentation using 3D fully convolutional deep networks. | ||
<https://arxiv.org/abs/1706.05721>`_. | ||
Args: | ||
smooth (float): A float number to smooth loss, and avoid NaN error. | ||
Default: 1. | ||
class_weight (list[float] | str, optional): Weight of each class. If in | ||
str format, read them from a file. Defaults to None. | ||
loss_weight (float, optional): Weight of the loss. Default to 1.0. | ||
ignore_index (int | None): The label index to be ignored. Default: 255. | ||
alpha(float, in [0, 1]): | ||
The coefficient of false positives. Default: 0.3. | ||
beta (float, in [0, 1]): | ||
The coefficient of false negatives. Default: 0.7. | ||
Note: alpha + beta = 1. | ||
loss_name (str, optional): Name of the loss item. If you want this loss | ||
item to be included into the backward graph, `loss_` must be the | ||
prefix of the name. Defaults to 'loss_tversky'. | ||
""" | ||
|
||
def __init__(self, | ||
smooth=1, | ||
class_weight=None, | ||
loss_weight=1.0, | ||
ignore_index=255, | ||
alpha=0.3, | ||
beta=0.7, | ||
loss_name='loss_tversky'): | ||
super(TverskyLoss, self).__init__() | ||
self.smooth = smooth | ||
self.class_weight = get_class_weight(class_weight) | ||
self.loss_weight = loss_weight | ||
self.ignore_index = ignore_index | ||
assert (alpha + beta == 1.0), 'Sum of alpha and beta but be 1.0!' | ||
self.alpha = alpha | ||
self.beta = beta | ||
self._loss_name = loss_name | ||
|
||
def forward(self, pred, target, **kwargs): | ||
if self.class_weight is not None: | ||
class_weight = pred.new_tensor(self.class_weight) | ||
else: | ||
class_weight = None | ||
|
||
pred = F.softmax(pred, dim=1) | ||
num_classes = pred.shape[1] | ||
one_hot_target = F.one_hot( | ||
torch.clamp(target.long(), 0, num_classes - 1), | ||
num_classes=num_classes) | ||
valid_mask = (target != self.ignore_index).long() | ||
|
||
loss = self.loss_weight * tversky_loss( | ||
pred, | ||
one_hot_target, | ||
valid_mask=valid_mask, | ||
alpha=self.alpha, | ||
beta=self.beta, | ||
smooth=self.smooth, | ||
class_weight=class_weight, | ||
ignore_index=self.ignore_index) | ||
return loss | ||
|
||
@property | ||
def loss_name(self): | ||
"""Loss Name. | ||
This function must be implemented and will return the name of this | ||
loss function. This name will be used to combine different loss items | ||
by simple sum operation. In addition, if you want this loss item to be | ||
included into the backward graph, `loss_` must be the prefix of the | ||
name. | ||
Returns: | ||
str: The name of this loss item. | ||
""" | ||
return self._loss_name |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
import pytest | ||
import torch | ||
|
||
|
||
def test_tversky_lose(): | ||
from mmseg.models import build_loss | ||
|
||
# test alpha + beta != 1 | ||
with pytest.raises(AssertionError): | ||
loss_cfg = dict( | ||
type='TverskyLoss', | ||
class_weight=[1.0, 2.0, 3.0], | ||
loss_weight=1.0, | ||
alpha=0.4, | ||
beta=0.7, | ||
loss_name='loss_tversky') | ||
tversky_loss = build_loss(loss_cfg) | ||
logits = torch.rand(8, 3, 4, 4) | ||
labels = (torch.rand(8, 4, 4) * 3).long() | ||
tversky_loss(logits, labels, ignore_index=1) | ||
|
||
# test tversky loss | ||
loss_cfg = dict( | ||
type='TverskyLoss', | ||
class_weight=[1.0, 2.0, 3.0], | ||
loss_weight=1.0, | ||
ignore_index=1, | ||
loss_name='loss_tversky') | ||
tversky_loss = build_loss(loss_cfg) | ||
logits = torch.rand(8, 3, 4, 4) | ||
labels = (torch.rand(8, 4, 4) * 3).long() | ||
tversky_loss(logits, labels) | ||
|
||
# test loss with class weights from file | ||
import os | ||
import tempfile | ||
|
||
import mmcv | ||
import numpy as np | ||
tmp_file = tempfile.NamedTemporaryFile() | ||
|
||
mmcv.dump([1.0, 2.0, 3.0], f'{tmp_file.name}.pkl', 'pkl') # from pkl file | ||
loss_cfg = dict( | ||
type='TverskyLoss', | ||
class_weight=f'{tmp_file.name}.pkl', | ||
loss_weight=1.0, | ||
ignore_index=1, | ||
loss_name='loss_tversky') | ||
tversky_loss = build_loss(loss_cfg) | ||
tversky_loss(logits, labels) | ||
|
||
np.save(f'{tmp_file.name}.npy', np.array([1.0, 2.0, 3.0])) # from npy file | ||
loss_cfg = dict( | ||
type='TverskyLoss', | ||
class_weight=f'{tmp_file.name}.pkl', | ||
loss_weight=1.0, | ||
ignore_index=1, | ||
loss_name='loss_tversky') | ||
tversky_loss = build_loss(loss_cfg) | ||
tversky_loss(logits, labels) | ||
tmp_file.close() | ||
os.remove(f'{tmp_file.name}.pkl') | ||
os.remove(f'{tmp_file.name}.npy') | ||
|
||
# test tversky loss has name `loss_tversky` | ||
loss_cfg = dict( | ||
type='TverskyLoss', | ||
smooth=2, | ||
loss_weight=1.0, | ||
ignore_index=1, | ||
alpha=0.3, | ||
beta=0.7, | ||
loss_name='loss_tversky') | ||
tversky_loss = build_loss(loss_cfg) | ||
assert tversky_loss.loss_name == 'loss_tversky' |