Skip to content

Commit

Permalink
generate and plot confusion matrix
Browse files Browse the repository at this point in the history
  • Loading branch information
HJoonKwon committed Feb 17, 2022
1 parent 71c201b commit e7a6f04
Showing 1 changed file with 175 additions and 0 deletions.
175 changes: 175 additions & 0 deletions tools/confusion_matrix.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
import argparse
import os

import matplotlib.pyplot as plt
import mmcv
import numpy as np
from matplotlib.ticker import MultipleLocator
from mmcv import Config, DictAction

from mmseg.datasets import build_dataset


def parse_args():
parser = argparse.ArgumentParser(
description='Generate confusion matrix from segmentation results')
parser.add_argument('config', help='test config file path')
parser.add_argument(
'prediction_path', help='prediction path where test .pkl result')
parser.add_argument(
'save_dir', help='directory where confusion matrix will be saved')
parser.add_argument(
'--show', action='store_true', help='show confusion matrix')
parser.add_argument(
'--color-theme',
default='winter',
help='theme of the matrix color map')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args


def calculate_confusion_matrix(dataset, results):
"""Calculate the confusion matrix.
Args:
dataset (Dataset): Test or val dataset.
results (list[ndarray]): A list of segmentation results in each image.
"""
n = len(dataset.CLASSES)
confusion_matrix = np.zeros(shape=[n, n])
assert len(dataset) == len(results)
prog_bar = mmcv.ProgressBar(len(results))
for idx, per_img_res in enumerate(results):
res_segm = per_img_res
gt_segm = dataset.get_gt_seg_map_by_idx(idx)
inds = n * gt_segm + res_segm
inds = inds.flatten()
mat = np.bincount(inds, minlength=n**2).reshape(n, n)
confusion_matrix += mat
prog_bar.update()
return confusion_matrix


def plot_confusion_matrix(confusion_matrix,
labels,
save_dir=None,
show=True,
title='Normalized Confusion Matrix',
color_theme='winter'):
"""Draw confusion matrix with matplotlib.
Args:
confusion_matrix (ndarray): The confusion matrix.
labels (list[str]): List of class names.
save_dir (str|optional): If set, save the confusion matrix plot to the
given path. Default: None.
show (bool): Whether to show the plot. Default: True.
title (str): Title of the plot. Default: `Normalized Confusion Matrix`.
color_theme (str): Theme of the matrix color map. Default: `winter`.
"""
# normalize the confusion matrix
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis]
confusion_matrix = \
confusion_matrix.astype(np.float32) / per_label_sums * 100

num_classes = len(labels)
fig, ax = plt.subplots(
figsize=(2 * num_classes, 2 * num_classes * 0.8), dpi=180)
cmap = plt.get_cmap(color_theme)
im = ax.imshow(confusion_matrix, cmap=cmap)
plt.colorbar(mappable=im, ax=ax)

title_font = {'weight': 'bold', 'size': 12}
ax.set_title(title, fontdict=title_font)
label_font = {'size': 10}
plt.ylabel('Ground Truth Label', fontdict=label_font)
plt.xlabel('Prediction Label', fontdict=label_font)

# draw locator
xmajor_locator = MultipleLocator(1)
xminor_locator = MultipleLocator(0.5)
ax.xaxis.set_major_locator(xmajor_locator)
ax.xaxis.set_minor_locator(xminor_locator)
ymajor_locator = MultipleLocator(1)
yminor_locator = MultipleLocator(0.5)
ax.yaxis.set_major_locator(ymajor_locator)
ax.yaxis.set_minor_locator(yminor_locator)

# draw grid
ax.grid(True, which='minor', linestyle='-')

# draw label
ax.set_xticks(np.arange(num_classes))
ax.set_yticks(np.arange(num_classes))
ax.set_xticklabels(labels)
ax.set_yticklabels(labels)

ax.tick_params(
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True)
plt.setp(
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor')

# draw confution matrix value
for i in range(num_classes):
for j in range(num_classes):
ax.text(
j,
i,
'{}%'.format(round(confusion_matrix[i, j], 2)),
ha='center',
va='center',
color='w',
size=7)

ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1

fig.tight_layout()
if save_dir is not None:
plt.savefig(
os.path.join(save_dir, 'confusion_matrix.png'), format='png')
if show:
plt.show()


def main():
args = parse_args()

cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)

results = mmcv.load(args.prediction_path)

assert isinstance(results, list)
if isinstance(results[0], np.ndarray):
pass
else:
raise TypeError('invalid type of prediction results')

if isinstance(cfg.data.test, dict):
cfg.data.test.test_mode = True
elif isinstance(cfg.data.test, list):
for ds_cfg in cfg.data.test:
ds_cfg.test_mode = True

dataset = build_dataset(cfg.data.test)
confusion_matrix = calculate_confusion_matrix(dataset, results)
plot_confusion_matrix(
confusion_matrix,
dataset.CLASSES,
save_dir=args.save_dir,
show=args.show)


if __name__ == '__main__':
main()

0 comments on commit e7a6f04

Please sign in to comment.