-
Notifications
You must be signed in to change notification settings - Fork 2.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
175 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
import argparse | ||
import os | ||
|
||
import matplotlib.pyplot as plt | ||
import mmcv | ||
import numpy as np | ||
from matplotlib.ticker import MultipleLocator | ||
from mmcv import Config, DictAction | ||
|
||
from mmseg.datasets import build_dataset | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser( | ||
description='Generate confusion matrix from segmentation results') | ||
parser.add_argument('config', help='test config file path') | ||
parser.add_argument( | ||
'prediction_path', help='prediction path where test .pkl result') | ||
parser.add_argument( | ||
'save_dir', help='directory where confusion matrix will be saved') | ||
parser.add_argument( | ||
'--show', action='store_true', help='show confusion matrix') | ||
parser.add_argument( | ||
'--color-theme', | ||
default='winter', | ||
help='theme of the matrix color map') | ||
parser.add_argument( | ||
'--cfg-options', | ||
nargs='+', | ||
action=DictAction, | ||
help='override some settings in the used config, the key-value pair ' | ||
'in xxx=yyy format will be merged into config file. If the value to ' | ||
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | ||
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | ||
'Note that the quotation marks are necessary and that no white space ' | ||
'is allowed.') | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def calculate_confusion_matrix(dataset, results): | ||
"""Calculate the confusion matrix. | ||
Args: | ||
dataset (Dataset): Test or val dataset. | ||
results (list[ndarray]): A list of segmentation results in each image. | ||
""" | ||
n = len(dataset.CLASSES) | ||
confusion_matrix = np.zeros(shape=[n, n]) | ||
assert len(dataset) == len(results) | ||
prog_bar = mmcv.ProgressBar(len(results)) | ||
for idx, per_img_res in enumerate(results): | ||
res_segm = per_img_res | ||
gt_segm = dataset.get_gt_seg_map_by_idx(idx) | ||
inds = n * gt_segm + res_segm | ||
inds = inds.flatten() | ||
mat = np.bincount(inds, minlength=n**2).reshape(n, n) | ||
confusion_matrix += mat | ||
prog_bar.update() | ||
return confusion_matrix | ||
|
||
|
||
def plot_confusion_matrix(confusion_matrix, | ||
labels, | ||
save_dir=None, | ||
show=True, | ||
title='Normalized Confusion Matrix', | ||
color_theme='winter'): | ||
"""Draw confusion matrix with matplotlib. | ||
Args: | ||
confusion_matrix (ndarray): The confusion matrix. | ||
labels (list[str]): List of class names. | ||
save_dir (str|optional): If set, save the confusion matrix plot to the | ||
given path. Default: None. | ||
show (bool): Whether to show the plot. Default: True. | ||
title (str): Title of the plot. Default: `Normalized Confusion Matrix`. | ||
color_theme (str): Theme of the matrix color map. Default: `winter`. | ||
""" | ||
# normalize the confusion matrix | ||
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis] | ||
confusion_matrix = \ | ||
confusion_matrix.astype(np.float32) / per_label_sums * 100 | ||
|
||
num_classes = len(labels) | ||
fig, ax = plt.subplots( | ||
figsize=(2 * num_classes, 2 * num_classes * 0.8), dpi=180) | ||
cmap = plt.get_cmap(color_theme) | ||
im = ax.imshow(confusion_matrix, cmap=cmap) | ||
plt.colorbar(mappable=im, ax=ax) | ||
|
||
title_font = {'weight': 'bold', 'size': 12} | ||
ax.set_title(title, fontdict=title_font) | ||
label_font = {'size': 10} | ||
plt.ylabel('Ground Truth Label', fontdict=label_font) | ||
plt.xlabel('Prediction Label', fontdict=label_font) | ||
|
||
# draw locator | ||
xmajor_locator = MultipleLocator(1) | ||
xminor_locator = MultipleLocator(0.5) | ||
ax.xaxis.set_major_locator(xmajor_locator) | ||
ax.xaxis.set_minor_locator(xminor_locator) | ||
ymajor_locator = MultipleLocator(1) | ||
yminor_locator = MultipleLocator(0.5) | ||
ax.yaxis.set_major_locator(ymajor_locator) | ||
ax.yaxis.set_minor_locator(yminor_locator) | ||
|
||
# draw grid | ||
ax.grid(True, which='minor', linestyle='-') | ||
|
||
# draw label | ||
ax.set_xticks(np.arange(num_classes)) | ||
ax.set_yticks(np.arange(num_classes)) | ||
ax.set_xticklabels(labels) | ||
ax.set_yticklabels(labels) | ||
|
||
ax.tick_params( | ||
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True) | ||
plt.setp( | ||
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor') | ||
|
||
# draw confution matrix value | ||
for i in range(num_classes): | ||
for j in range(num_classes): | ||
ax.text( | ||
j, | ||
i, | ||
'{}%'.format(round(confusion_matrix[i, j], 2)), | ||
ha='center', | ||
va='center', | ||
color='w', | ||
size=7) | ||
|
||
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1 | ||
|
||
fig.tight_layout() | ||
if save_dir is not None: | ||
plt.savefig( | ||
os.path.join(save_dir, 'confusion_matrix.png'), format='png') | ||
if show: | ||
plt.show() | ||
|
||
|
||
def main(): | ||
args = parse_args() | ||
|
||
cfg = Config.fromfile(args.config) | ||
if args.cfg_options is not None: | ||
cfg.merge_from_dict(args.cfg_options) | ||
|
||
results = mmcv.load(args.prediction_path) | ||
|
||
assert isinstance(results, list) | ||
if isinstance(results[0], np.ndarray): | ||
pass | ||
else: | ||
raise TypeError('invalid type of prediction results') | ||
|
||
if isinstance(cfg.data.test, dict): | ||
cfg.data.test.test_mode = True | ||
elif isinstance(cfg.data.test, list): | ||
for ds_cfg in cfg.data.test: | ||
ds_cfg.test_mode = True | ||
|
||
dataset = build_dataset(cfg.data.test) | ||
confusion_matrix = calculate_confusion_matrix(dataset, results) | ||
plot_confusion_matrix( | ||
confusion_matrix, | ||
dataset.CLASSES, | ||
save_dir=args.save_dir, | ||
show=args.show) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |