Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Docs] Refactor the structure of documentation #1128

Merged
merged 10 commits into from
Dec 16, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion .github/workflows/build.yml
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@ on:
- 'docker/**'
- 'tools/**'
- 'docs/**'
- 'docs_zh-CN/**'
- '**.md'

concurrency:
Expand Down
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,8 @@ instance/
.scrapy

# Sphinx documentation
docs/_build/
docs/en/_build/
MengzhangLI marked this conversation as resolved.
Show resolved Hide resolved
docs/zh_cn/_build/

# PyBuilder
target/
Expand Down
36 changes: 18 additions & 18 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ Please refer to [changelog.md](docs/changelog.md) for details and release histor

## Benchmark and model zoo

Results and models are available in the [model zoo](docs/model_zoo.md).
Results and models are available in the [model zoo](docs/en/model_zoo.md).

Supported backbones:

Expand Down Expand Up @@ -105,29 +105,29 @@ Supported methods:

Supported datasets:

- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#pascal-voc)
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#ade20k)
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#pascal-context)
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#coco-stuff-10k)
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#coco-stuff-164k)
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#chase-db1)
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#drive)
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#hrf)
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#stare)
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#dark-zurich)
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#nighttime-driving)
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#loveda)
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#pascal-voc)
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#ade20k)
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#pascal-context)
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#coco-stuff-10k)
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#coco-stuff-164k)
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#chase-db1)
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#drive)
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#hrf)
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#stare)
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#dark-zurich)
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#nighttime-driving)
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#loveda)

## Installation

Please refer to [get_started.md](docs/get_started.md#installation) for installation and [dataset_prepare.md](docs/dataset_prepare.md#prepare-datasets) for dataset preparation.
Please refer to [get_started.md](docs/en/get_started.md#installation) for installation and [dataset_prepare.md](docs/en/dataset_prepare.md#prepare-datasets) for dataset preparation.

## Get Started

Please see [train.md](docs/train.md) and [inference.md](docs/inference.md) for the basic usage of MMSegmentation.
There are also tutorials for [customizing dataset](docs/tutorials/customize_datasets.md), [designing data pipeline](docs/tutorials/data_pipeline.md), [customizing modules](docs/tutorials/customize_models.md), and [customizing runtime](docs/tutorials/customize_runtime.md).
We also provide many [training tricks](docs/tutorials/training_tricks.md) for better training and [useful tools](docs/useful_tools.md) for deployment.
Please see [train.md](docs/en/train.md) and [inference.md](docs/en/inference.md) for the basic usage of MMSegmentation.
There are also tutorials for [customizing dataset](docs/en/tutorials/customize_datasets.md), [designing data pipeline](docs/en/tutorials/data_pipeline.md), [customizing modules](docs/en/tutorials/customize_models.md), and [customizing runtime](docs/en/tutorials/customize_runtime.md).
We also provide many [training tricks](docs/en/tutorials/training_tricks.md) for better training and [useful tools](docs/en/useful_tools.md) for deployment.

A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSegmentation_Tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/master/demo/MMSegmentation_Tutorial.ipynb) on Colab.

Expand Down
38 changes: 19 additions & 19 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O

## 基准测试和模型库

测试结果和模型可以在[模型库](docs_zh-CN/model_zoo.md)中找到。
测试结果和模型可以在[模型库](docs/zh_cn/model_zoo.md)中找到。

已支持的骨干网络:

Expand Down Expand Up @@ -104,29 +104,29 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O

已支持的数据集:

- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#pascal-voc)
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#ade20k)
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#pascal-context)
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#coco-stuff-10k)
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#coco-stuff-164k)
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#chase-db1)
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#drive)
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#hrf)
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#stare)
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#dark-zurich)
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#nighttime-driving)
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#loveda)
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#pascal-voc)
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#ade20k)
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#pascal-context)
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#coco-stuff-10k)
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#coco-stuff-164k)
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#chase-db1)
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#drive)
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#hrf)
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#stare)
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#dark-zurich)
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#nighttime-driving)
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#loveda)

## 安装

请参考[快速入门文档](docs_zh-CN/get_started.md#installation)进行安装,参考[数据集准备](docs_zh-CN/dataset_prepare.md)处理数据。
请参考[快速入门文档](docs/zh_cn/get_started.md#installation)进行安装,参考[数据集准备](docs/zh_cn/dataset_prepare.md)处理数据。

## 快速入门

请参考[训练教程](docs_zh-CN/train.md)和[测试教程](docs_zh-CN/inference.md)学习 MMSegmentation 的基本使用。
我们也提供了一些进阶教程,内容覆盖了[增加自定义数据集](docs_zh-CN/tutorials/customize_datasets.md),[设计新的数据预处理流程](docs_zh-CN/tutorials/data_pipeline.md),[增加自定义模型](docs_zh-CN/tutorials/customize_models.md),[增加自定义的运行时配置](docs_zh-CN/tutorials/customize_runtime.md)。
除此之外,我们也提供了很多实用的[训练技巧说明](docs_zh-CN/tutorials/training_tricks.md)和模型部署相关的[有用的工具](docs_zh-CN/useful_tools.md)。
请参考[训练教程](docs/zh_cn/train.md)和[测试教程](docs/zh_cn/inference.md)学习 MMSegmentation 的基本使用。
我们也提供了一些进阶教程,内容覆盖了[增加自定义数据集](docs/zh_cn/tutorials/customize_datasets.md),[设计新的数据预处理流程](docs/zh_cn/tutorials/data_pipeline.md),[增加自定义模型](docs/zh_cn/tutorials/customize_models.md),[增加自定义的运行时配置](docs/zh_cn/tutorials/customize_runtime.md)。
除此之外,我们也提供了很多实用的[训练技巧说明](docs/zh_cn/tutorials/training_tricks.md)和模型部署相关的[有用的工具](docs/zh_cn/useful_tools.md)。

同时,我们提供了 Colab 教程。你可以在[这里](demo/MMSegmentation_Tutorial.ipynb)浏览教程,或者直接在 Colab 上[运行](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/master/demo/MMSegmentation_Tutorial.ipynb)。

Expand Down Expand Up @@ -173,7 +173,7 @@ MMSegmentation 是一个由来自不同高校和企业的研发人员共同参
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 [OpenMMLab 团队](https://jq.qq.com/?_wv=1027&k=aCvMxdr3) 以及 [MMSegmentation](https://jq.qq.com/?_wv=1027&k=ukevz6Ie) 的 QQ 群。

<div align="center">
<img src="docs_zh-CN/imgs/zhihu_qrcode.jpg" height="400" /> <img src="docs_zh-CN/imgs/qq_group_qrcode.jpg" height="400" /> <img src="docs_zh-CN/imgs/seggroup_qrcode.jpg" height="400" />
<img src="docs/zh_cn/imgs/zhihu_qrcode.jpg" height="400" /> <img src="docs/zh_cn/imgs/qq_group_qrcode.jpg" height="400" /> <img src="docs/zh_cn/imgs/seggroup_qrcode.jpg" height="400" />
</div>

我们会在 OpenMMLab 社区为大家
Expand Down
2 changes: 1 addition & 1 deletion demo/MMSegmentation_Tutorial.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -230,7 +230,7 @@
"\n",
"Datasets in MMSegmentation require image and semantic segmentation maps to be placed in folders with the same perfix. To support a new dataset, we may need to modify the original file structure. \n",
"\n",
"In this tutorial, we give an example of converting the dataset. You may refer to [docs](https://github.com/open-mmlab/mmsegmentation/docs/tutorials/new_dataset.md) for details about dataset reorganization. \n",
"In this tutorial, we give an example of converting the dataset. You may refer to [docs](https://github.com/open-mmlab/mmsegmentation/docs/en/tutorials/new_dataset.md) for details about dataset reorganization. \n",
"\n",
"We use [Standord Background Dataset](http://dags.stanford.edu/projects/scenedataset.html) as an example. The dataset contains 715 images chosen from existing public datasets [LabelMe](http://labelme.csail.mit.edu), [MSRC](http://research.microsoft.com/en-us/projects/objectclassrecognition), [PASCAL VOC](http://pascallin.ecs.soton.ac.uk/challenges/VOC) and [Geometric Context](http://www.cs.illinois.edu/homes/dhoiem/). Images from these datasets are mainly outdoor scenes, each containing approximately 320-by-240 pixels. \n",
"In this tutorial, we use the region annotations as labels. There are 8 classes in total, i.e. sky, tree, road, grass, water, building, mountain, and foreground object. "
Expand Down
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
4 changes: 2 additions & 2 deletions docs/conf.py → docs/en/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,14 +17,14 @@

import pytorch_sphinx_theme

sys.path.insert(0, os.path.abspath('..'))
sys.path.insert(0, os.path.abspath('../../'))

# -- Project information -----------------------------------------------------

project = 'MMSegmentation'
copyright = '2020-2021, OpenMMLab'
author = 'MMSegmentation Authors'
version_file = '../mmseg/version.py'
version_file = '../../mmseg/version.py'


def get_version():
Expand Down
4 changes: 2 additions & 2 deletions docs/dataset_prepare.md → docs/en/dataset_prepare.md
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,7 @@ If you would like to use augmented VOC dataset, please run following command to
python tools/convert_datasets/voc_aug.py data/VOCdevkit data/VOCdevkit/VOCaug --nproc 8
```

Please refer to [concat dataset](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/tutorials/customize_datasets.md#concatenate-dataset) for details about how to concatenate them and train them together.
Please refer to [concat dataset](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/tutorials/customize_datasets.md#concatenate-dataset) for details about how to concatenate them and train them together.

### ADE20K

Expand Down Expand Up @@ -283,6 +283,6 @@ For LoveDA dataset, please run the following command to download and re-organize
python tools/convert_datasets/loveda.py /path/to/loveDA
```

Using trained model to predict test set of LoveDA and submit it to server can be found [here](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/inference.md).
Using trained model to predict test set of LoveDA and submit it to server can be found [here](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/inference.md).

More details about LoveDA can be found [here](https://github.com/Junjue-Wang/LoveDA).
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
2 changes: 1 addition & 1 deletion docs/train.md → docs/en/train.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ GPUS=16 ./tools/slurm_train.sh dev pspr50 configs/pspnet/pspnet_r50-d8_512x1024_
You can check [slurm_train.sh](../tools/slurm_train.sh) for full arguments and environment variables.

If you have just multiple machines connected with ethernet, you can refer to
PyTorch [launch utility](https://pytorch.org/docs/stable/distributed_deprecated.html#launch-utility).
PyTorch [launch utility](https://pytorch.org/docs/stable/distributed.html#launch-utility).
Usually it is slow if you do not have high speed networking like InfiniBand.

### Launch multiple jobs on a single machine
Expand Down
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
2 changes: 1 addition & 1 deletion docs/useful_tools.md → docs/en/useful_tools.md
Original file line number Diff line number Diff line change
Expand Up @@ -189,7 +189,7 @@ A script to convert [ONNX](https://github.com/onnx/onnx) model to [TensorRT](htt

Prerequisite

- install `mmcv-full` with ONNXRuntime custom ops and TensorRT plugins follow [ONNXRuntime in mmcv](https://mmcv.readthedocs.io/en/latest/onnxruntime_op.html) and [TensorRT plugin in mmcv](https://github.com/open-mmlab/mmcv/blob/master/docs/tensorrt_plugin.md).
- install `mmcv-full` with ONNXRuntime custom ops and TensorRT plugins follow [ONNXRuntime in mmcv](https://mmcv.readthedocs.io/en/latest/deployment/onnxruntime_op.html) and [TensorRT plugin in mmcv](https://github.com/open-mmlab/mmcv/blob/master/docs/en/deployment/tensorrt_plugin.md).
- Use [pytorch2onnx](#convert-to-onnx-experimental) to convert the model from PyTorch to ONNX.

Usage
Expand Down
File renamed without changes.
File renamed without changes.
4 changes: 2 additions & 2 deletions docs_zh-CN/conf.py → docs/zh_cn/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,14 +17,14 @@

import pytorch_sphinx_theme

sys.path.insert(0, os.path.abspath('..'))
sys.path.insert(0, os.path.abspath('../../'))

# -- Project information -----------------------------------------------------

project = 'MMSegmentation'
copyright = '2020-2021, OpenMMLab'
author = 'MMSegmentation Authors'
version_file = '../mmseg/version.py'
version_file = '../../mmseg/version.py'


def get_version():
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ Pascal VOC 2012 可以在 [这里](http://host.robots.ox.ac.uk/pascal/VOC/voc201
python tools/convert_datasets/voc_aug.py data/VOCdevkit data/VOCdevkit/VOCaug --nproc 8
```

关于如何拼接数据集 (concatenate) 并一起训练它们,更多细节请参考 [拼接连接数据集](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/tutorials/customize_datasets.md#%E6%8B%BC%E6%8E%A5%E6%95%B0%E6%8D%AE%E9%9B%86) 。
关于如何拼接数据集 (concatenate) 并一起训练它们,更多细节请参考 [拼接连接数据集](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/tutorials/customize_datasets.md#%E6%8B%BC%E6%8E%A5%E6%95%B0%E6%8D%AE%E9%9B%86) 。

### ADE20K

Expand Down Expand Up @@ -225,6 +225,6 @@ wget https://zenodo.org/record/5706578/files/Test.zip
python tools/convert_datasets/loveda.py /path/to/loveDA
```

请参照 [这里](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/inference.md) 来使用训练好的模型去预测 LoveDA 测试集并且提交到官网。
请参照 [这里](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/inference.md) 来使用训练好的模型去预测 LoveDA 测试集并且提交到官网。

关于 LoveDA 的更多细节可以在[这里](https://github.com/Junjue-Wang/LoveDA) 找到。
File renamed without changes.
File renamed without changes
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
2 changes: 1 addition & 1 deletion docs_zh-CN/train.md → docs/zh_cn/train.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ GPUS=16 ./tools/slurm_train.sh dev pspr50 configs/pspnet/pspnet_r50-d8_512x1024_
您可以查看 [slurm_train.sh](../tools/slurm_train.sh) 以熟悉全部的参数与环境变量。

如果您多个机器已经有以太网连接, 您可以参考 PyTorch
[launch utility](https://pytorch.org/docs/stable/distributed_deprecated.html#launch-utility) 。
[launch utility](https://pytorch.org/docs/stable/distributed.html#launch-utility) 。
若您没有像 InfiniBand 这样高速的网络连接,多机器训练通常会比较慢。

### 在单个机器上启动多个任务
Expand Down
File renamed without changes.
File renamed without changes.
2 changes: 1 addition & 1 deletion docs_zh-CN/useful_tools.md → docs/zh_cn/useful_tools.md
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,7 @@ python tools/pytorch2torchscript.py \

先决条件

- 按照 [ONNXRuntime in mmcv](https://mmcv.readthedocs.io/en/latest/onnxruntime_op.html) 和 [TensorRT plugin in mmcv](https://github.com/open-mmlab/mmcv/blob/master/docs/tensorrt_plugin.md) ,用 ONNXRuntime 自定义运算 (custom ops) 和 TensorRT 插件安装 `mmcv-full`
- 按照 [ONNXRuntime in mmcv](https://mmcv.readthedocs.io/en/latest/deployment/onnxruntime_op.html) 和 [TensorRT plugin in mmcv](https://github.com/open-mmlab/mmcv/blob/master/docs/en/deployment/tensorrt_plugin.md) ,用 ONNXRuntime 自定义运算 (custom ops) 和 TensorRT 插件安装 `mmcv-full`
- 使用 [pytorch2onnx](#convert-to-onnx-experimental) 将模型从 PyTorch 转成 ONNX

使用方法
Expand Down
2 changes: 1 addition & 1 deletion mmseg/datasets/custom.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ class CustomDataset(Dataset):
``xxx{img_suffix}`` and ``xxx{seg_map_suffix}`` (extension is also included
in the suffix). If split is given, then ``xxx`` is specified in txt file.
Otherwise, all files in ``img_dir/``and ``ann_dir`` will be loaded.
Please refer to ``docs/tutorials/new_dataset.md`` for more details.
Please refer to ``docs/en/tutorials/new_dataset.md`` for more details.


Args:
Expand Down