Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Enchance] support infererence with padding #1607

Merged
merged 3 commits into from
Jun 15, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions mmseg/datasets/pipelines/test_time_aug.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,14 @@ def __init__(self,
img_ratios=None,
flip=False,
flip_direction='horizontal'):
if flip:
trans_index = {
key['type']: index
for index, key in enumerate(transforms)
}
if 'RandomFlip' in trans_index and 'Pad' in trans_index:
assert trans_index['RandomFlip'] < trans_index['Pad'], \
'Pad must be executed after RandomFlip when flip is True'
self.transforms = Compose(transforms)
if img_ratios is not None:
img_ratios = img_ratios if isinstance(img_ratios,
Expand Down
6 changes: 6 additions & 0 deletions mmseg/models/segmentors/encoder_decoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -189,6 +189,9 @@ def slide_inference(self, img, img_meta, rescale):
count_mat.cpu().detach().numpy()).to(device=img.device)
preds = preds / count_mat
if rescale:
# remove padding area
resize_shape = img_meta[0]['img_shape'][:2]
preds = preds[:, :, :resize_shape[0], :resize_shape[1]]
preds = resize(
preds,
size=img_meta[0]['ori_shape'][:2],
Expand All @@ -206,6 +209,9 @@ def whole_inference(self, img, img_meta, rescale):
if torch.onnx.is_in_onnx_export():
size = img.shape[2:]
else:
# remove padding area
resize_shape = img_meta[0]['img_shape'][:2]
seg_logit = seg_logit[:, :, :resize_shape[0], :resize_shape[1]]
size = img_meta[0]['ori_shape'][:2]
seg_logit = resize(
seg_logit,
Expand Down
38 changes: 38 additions & 0 deletions tests/test_data/test_tta.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,3 +149,41 @@ def test_multi_scale_flip_aug():
assert tta_results['scale'] == [(256, 256), (256, 256), (512, 512),
(512, 512), (1024, 1024), (1024, 1024)]
assert tta_results['flip'] == [False, True, False, True, False, True]

# test assertion if flip is True and Pad executed before RandomFlip
with pytest.raises(AssertionError):
tta_transform = dict(
type='MultiScaleFlipAug',
img_scale=[(256, 256), (512, 512), (1024, 1024)],
img_ratios=None,
flip=True,
transforms=[
dict(type='Resize', keep_ratio=False),
dict(type='Pad', size_divisor=32),
dict(type='RandomFlip'),
])
tta_module = build_from_cfg(tta_transform, PIPELINES)

tta_transform = dict(
type='MultiScaleFlipAug',
img_scale=[(256, 256), (512, 512), (1024, 1024)],
img_ratios=None,
flip=True,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Pad', size_divisor=32),
])
tta_module = build_from_cfg(tta_transform, PIPELINES)
tta_results = tta_module(results.copy())
assert tta_results['scale'] == [(256, 256), (256, 256), (512, 512),
(512, 512), (1024, 1024), (1024, 1024)]
assert tta_results['flip'] == [False, True, False, True, False, True]
assert tta_results['img_shape'] == [(144, 256, 3), (144, 256, 3),
(288, 512, 3), (288, 512, 3),
(576, 1024, 3), (576, 1024, 3)]
assert tta_results['pad_shape'] == [(160, 256, 3), (160, 256, 3),
(288, 512, 3), (288, 512, 3),
(576, 1024, 3), (576, 1024, 3)]
for i in range(len(tta_results['img'])):
assert tta_results['img'][i].shape == tta_results['pad_shape'][i]