Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Support OTB100 dataset in SOT #271

Merged
merged 50 commits into from
Sep 24, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
50 commits
Select commit Hold shift + click to select a range
91e36c1
[Fix]sot
Jul 26, 2021
50be97b
Merge branch 'master' of github.com:open-mmlab/mmtracking into tmp
Jul 26, 2021
0f1b67f
track_results
Jul 27, 2021
166d615
track_results
Jul 27, 2021
f9855ea
[FIX]save_video
Jul 27, 2021
c146026
track_results
Jul 27, 2021
1e0c810
ignore
Jul 27, 2021
b244b51
sor_anchor_gengerator
Jul 27, 2021
795735e
anchor
Jul 28, 2021
56a96be
bbox order
Jul 29, 2021
2edfe5b
float
Jul 29, 2021
62d2e5e
add comments about anchor
Jul 29, 2021
347b46e
merge master track_results
Jul 30, 2021
2abf707
anchor shift in get postive pair
Jul 30, 2021
91b4853
right anchor
Jul 30, 2021
39241e8
add TODO
Jul 30, 2021
bea2dda
Merge branch 'master' of github.com:open-mmlab/mmtracking into anchor
Jul 30, 2021
c7d375f
otb_65
Aug 3, 2021
47b23ed
fix format
Aug 3, 2021
e603c90
before grid_prior
Aug 3, 2021
ead24b0
grid_prior
Aug 3, 2021
ef033d2
base anchor order
Aug 3, 2021
c02afe3
otb weighted=False
Aug 3, 2021
766b7c0
del gen_grid_priors in SiamRPN head
Aug 3, 2021
aabbbf5
del grid_priors in siameserpn head
Aug 3, 2021
8ee0d96
rename otb100
Aug 5, 2021
a240e33
fix anchor order
Aug 7, 2021
5dcbd0b
dataset __init__
Aug 7, 2021
73db574
merge origin/anchor
Aug 7, 2021
f9ff2b1
fix anchor weights order
Aug 8, 2021
9992862
otb config
Aug 8, 2021
4236ce8
Merge branch 'anchor' into otb
Aug 8, 2021
6d282c3
cosine windows order
Aug 10, 2021
06eb59c
Merge branch 'anchor' into otb
Aug 10, 2021
0d726c4
anchor long ratio
Aug 11, 2021
fe10911
Merge branch 'anchor' into otb
Aug 11, 2021
fc34cdb
add int_wh in config
Aug 12, 2021
fa812d8
Merge branch 'anchor' into otb
Aug 12, 2021
0df833d
add int_wh in config
Aug 12, 2021
7cdbb35
fix otb dataset convert bug
Aug 13, 2021
7870f9b
merge upstream master
Aug 25, 2021
07f4ed4
merge upstream
Sep 10, 2021
fd3e123
merge upstream master
Sep 13, 2021
196e7ad
support otb100
Sep 14, 2021
c91bdab
add docs in OTB100
Sep 14, 2021
2ed0feb
Merge branch 'otb' of github.com:JingweiZhang12/mmtracking into otb
Sep 15, 2021
54cf172
fix typos on otb100
Sep 15, 2021
5211a8d
fix docs and the third party bs4
Sep 16, 2021
b649071
update otb100 config, log and model link
Sep 22, 2021
a10aeec
update readme
Sep 24, 2021
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 24 additions & 9 deletions configs/sot/siamese_rpn/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,18 +28,33 @@ We observe around 1.0 points fluctuations in Success and 1.5 points fluctuations

### UAV123

The checkpoints from 10-th to 20-th epoch will be evaluated during training.
The checkpoints from 10-th to 20-th epoch will be evaluated during training. You can find the best checkpoint from the log file.

After training, you need to pick up the best checkpoint from the log file, then use the best checkpoint to search the hyperparameters on UAV123 following [here](https://github.com/open-mmlab/mmtracking/blob/master/docs/useful_tools_scripts.md#siameserpn-test-time-parameter-search) to achieve the best results.
If you want to get better results, you can use the best checkpoint to search the hyperparameters on UAV123 following [here](https://github.com/open-mmlab/mmtracking/blob/master/docs/useful_tools_scripts.md#siameserpn-test-time-parameter-search).
Experimentally, the hyperparameters search on UAV123 can bring around 1.0 Success gain.

| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | Success | Norm precision | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :----: | :------: | :--------: |
| R-50 | - | 20e | 7.54 | - | 61.8 | 77.3 | [config](siamese_rpn_r50_1x_uav123.py) | [model](https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_lasot/siamese_rpn_r50_1x_lasot_20201218_051019-3c522eff.pth) | [log](https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_lasot/siamese_rpn_r50_1x_lasot_20201218_051019.log.json) |
The results below are achieved without hyperparameters search. We observe less than 0.5 points fluctuations both in Success and Percision.

| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | Success | Norm Precision | Precision | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :----: | :------: | :------: | :--------: |
| R-50 | - | 20e | 7.54 | - | 60.6 | 76.5 | 80.5 | [config](siamese_rpn_r50_1x_uav123.py) | [model](https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_uav123/siamese_rpn_r50_1x_uav123_20210917_104452-36ac4934.pth) | [log](https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_uav123/siamese_rpn_r50_1x_uav123_20210917_104452.log.json) |

### TrackingNet

The best model on LaSOT is submitted to [the evaluation server on TrackingNet Chanllenge](http://eval.tracking-net.org/web/challenges/challenge-page/39/submission). We provide the best model with its configuration and training log.
The results of SiameseRPN++ in TrackingNet are reimplemented by ourselves. The best model on LaSOT is submitted to [the evaluation server on TrackingNet Chanllenge](http://eval.tracking-net.org/web/challenges/challenge-page/39/submission). We observe less than 0.5 points fluctuations both in Success and Percision. We provide the best model with its configuration and training log.

| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | Success | Norm precision | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :----: | :------: | :--------: |
| R-50 | - | 20e | | - | 70.6 | 77.6 | [config](siamese_rpn_r50_1x_trackingnet.py) | [model](https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_lasot/siamese_rpn_r50_1x_lasot_20201218_051019-3c522eff.pth) | [log](https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_lasot/siamese_rpn_r50_1x_lasot_20201218_051019.log.json) |
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | Success | Norm precision | Precision |Config | Download |
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :----: | :------: | :------: | :--------: |
| R-50 | - | 20e | 7.54 | - | 70.6 | 77.6 | 65.7 | [config](siamese_rpn_r50_1x_trackingnet.py) | [model](https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_lasot/siamese_rpn_r50_1x_lasot_20201218_051019-3c522eff.pth) | [log](https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_lasot/siamese_rpn_r50_1x_lasot_20201218_051019.log.json) |

### OTB100

The checkpoints from 10-th to 20-th epoch will be evaluated during training. You can find the best checkpoint from the log file.

If you want to get better results, you can use the best checkpoint to search the hyperparameters on OTB100 following [here](https://github.com/open-mmlab/mmtracking/blob/master/docs/useful_tools_scripts.md#siameserpn-test-time-parameter-search). Experimentally, the hyperparameters search on OTB100 can bring around 1.0 Success gain.

**Note:** We train the SiameseRPN++ in the official [pysot](https://github.com/STVIR/pysot) codebase and can not reproduce the same results reported in the paper. We only get 66.1 Success and 86.7 Precision by following the training and hyperparameters searching instructions of pysot, which are lower than those of the paper by 3.5 Succuess and 4.7 Precision respectively. In our codebase, the Success and Precision are lower 4.8 and 3.7 respectively than those of the paper. Notably, the results below are achieved without hyperparameters search. We observe around 0.5 points fluctuations both in Success and Percision.

| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | Success | Norm Precision | Precision | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :----: | :------: | :------: | :--------: |
| R-50 | - | 20e | - | - | 64.8 | 83.2 | 87.7 | [config](siamese_rpn_r50_1x_otb100.py) | [model](https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_otb100/siamese_rpn_r50_1x_otb100_20210920_001757-12636a0a.pth) | [log](https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_otb100/siamese_rpn_r50_1x_otb100_20210920_001757.log.json) |
82 changes: 82 additions & 0 deletions configs/sot/siamese_rpn/siamese_rpn_r50_1x_otb100.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
_base_ = ['./siamese_rpn_r50_1x_lasot.py']

crop_size = 511
exemplar_size = 127
search_size = 255

# model settings
model = dict(
test_cfg=dict(rpn=dict(penalty_k=0.4, window_influence=0.5, lr=0.4)))

data_root = 'data/'
train_pipeline = [
dict(type='LoadMultiImagesFromFile', to_float32=True),
dict(type='SeqLoadAnnotations', with_bbox=True),
dict(
type='SeqCropLikeSiamFC',
context_amount=0.5,
exemplar_size=exemplar_size,
crop_size=crop_size),
dict(type='SeqGrayAug', prob=0.2),
dict(
type='SeqShiftScaleAug',
target_size=[exemplar_size, search_size],
shift=[4, 64],
scale=[0.05, 0.18]),
dict(type='SeqColorAug', prob=[1.0, 1.0]),
dict(type='SeqBlurAug', prob=[0.0, 0.2]),
dict(type='VideoCollect', keys=['img', 'gt_bboxes', 'is_positive_pairs']),
dict(type='ConcatVideoReferences'),
dict(type='SeqDefaultFormatBundle', ref_prefix='search')
]
# dataset settings
data = dict(
samples_per_gpu=16,
train=[
dict(
type='RepeatDataset',
times=39,
dataset=dict(
type='SOTTrainDataset',
ann_file=data_root +
'ILSVRC/annotations/imagenet_vid_train.json',
img_prefix=data_root + 'ILSVRC/Data/VID',
pipeline=train_pipeline,
ref_img_sampler=dict(
frame_range=100,
pos_prob=0.8,
filter_key_img=False,
return_key_img=True),
)),
dict(
type='SOTTrainDataset',
ann_file=data_root + 'coco/annotations/instances_train2017.json',
img_prefix=data_root + 'coco/train2017',
pipeline=train_pipeline,
ref_img_sampler=dict(
frame_range=0,
pos_prob=0.8,
filter_key_img=False,
return_key_img=True),
),
dict(
type='SOTTrainDataset',
ann_file=data_root +
'ILSVRC/annotations/imagenet_det_30plus1cls.json',
img_prefix=data_root + 'ILSVRC/Data/DET',
pipeline=train_pipeline,
ref_img_sampler=dict(
frame_range=0,
pos_prob=0.8,
filter_key_img=False,
return_key_img=True),
),
],
val=dict(
type='OTB100Dataset',
ann_file=data_root + 'otb100/annotations/otb100.json',
img_prefix=data_root + 'otb100/data'),
test=dict(
type='OTB100Dataset',
ann_file=data_root + 'otb100/annotations/otb100.json',
img_prefix=data_root + 'otb100/data'))
4 changes: 4 additions & 0 deletions configs/sot/siamese_rpn/siamese_rpn_r50_1x_uav123.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,10 @@
data_root = 'data/'
# dataset settings
data = dict(
val=dict(
type='UAV123Dataset',
ann_file=data_root + 'UAV123/annotations/uav123.json',
img_prefix=data_root + 'UAV123/data_seq/UAV123'),
test=dict(
type='UAV123Dataset',
ann_file=data_root + 'UAV123/annotations/uav123.json',
Expand Down
42 changes: 40 additions & 2 deletions docs/dataset.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,21 @@ This page provides the instructions for dataset preparation on existing benchmar
- [LaSOT](http://vision.cs.stonybrook.edu/~lasot/)
- [UAV123](https://cemse.kaust.edu.sa/ivul/uav123/)
- [TrackingNet](https://tracking-net.org/)
- [OTB100](http://www.visual-tracking.net/)

### 1. Download Datasets

Please download the datasets from the offical websites. It is recommended to symlink the root of the datasets to `$MMTRACKING/data`. If your folder structure is different from the following, you may need to change the corresponding paths in config files.

JingweiZhang12 marked this conversation as resolved.
Show resolved Hide resolved
For OTB100 dataset, you don't need to download the dataset from the official website manually, since we provide a sctipt to download it.

#### OTB100

```shell
# download OTB100 dataset by web crawling
python ./tools/convert_datasets/otb100/download_otb100.py -o ./data/otb100/zips -p 8
```

Notes:

- The `Lists` under `ILSVRC` contains the txt files from [here](https://github.com/msracver/Flow-Guided-Feature-Aggregation/tree/master/data/ILSVRC2015/ImageSets).
Expand All @@ -23,7 +33,7 @@ Notes:

- For the training and testing of multi object tracking task, only one of the MOT Challenge dataset (e.g. MOT17) is needed.

- For the training and testing of single object tracking task, the MSCOCO, ILSVRC, LaSOT, UAV123 and TrackingNet datasets are needed.
- For the training and testing of single object tracking task, the MSCOCO, ILSVRC, LaSOT, UAV123, TrackingNet and OTB100 datasets are needed.

```
mmtracking
Expand Down Expand Up @@ -77,6 +87,11 @@ mmtracking
│ │ ├── TEST
│ │ │ ├── anno
│ │ │ ├── zips
│ │
│ ├── otb100
│ │ │── zips
│ │ │ │── Basketball.zip
│ │ │ │── Biker.zip
```

### 2. Convert Annotations
Expand All @@ -103,10 +118,16 @@ python ./tools/convert_datasets/mot/mot2reid.py -i ./data/MOT17/ -o ./data/MOT17
python ./tools/convert_datasets/uav123/uav2coco.py -i ./data/UAV123/ -o ./data/UAV123/annotations

# TrackingNet
# unzip files in 'TEST/zips/*.zip'
# unzip files in 'data/trackingnet/TEST/zips/*.zip'
bash ./tools/convert_datasets/trackingnet/unzip_trackingnet_test.sh ./data/trackingnet/TEST
# generate testset annotaions
python ./tools/convert_datasets/trackingnet/trackingnet2coco.py -i ./data/trackingnet/TEST/ -o ./data/trackingnet/TEST/annotations

# OTB100
# unzip files in 'data/otb100/zips/*.zip'
bash ./tools/convert_datasets/otb100/unzip_otb100.sh ./data/otb100
# generate annotations
python ./tools/convert_datasets/otb100/otb2coco.py -i ./data/otb100/data -o ./data/otb100/annotations
```

The folder structure will be as following after your run these scripts:
Expand Down Expand Up @@ -174,6 +195,15 @@ mmtracking
│ │ │ ├── frames (the unzipped folders)
│ │ │ │ ├── 0-6LB4FqxoE_0
│ │ │ │ ├── 07Ysk1C0ZX0_0
│ │
│ ├── otb100
│ │ ├── zips
│ │ │ ├── Basketball.zip
│ │ │ ├── Biker.zip
│ │ ├── annotations
│ │ ├── data
│ │ │ ├── Basketball
│ │ │ │ ├── img
```

#### The folder of annotations in ILSVRC
Expand Down Expand Up @@ -256,3 +286,11 @@ There are 511 video directories of TrackingNet testset in `data/trackingnet/TEST
There are only 1 json files in `data/trackingnet/TEST/annotations`:

`trackingnet_test.json`: Json file containing the annotations information of the testing set in TrackingNet dataset.

#### The folder of data and annotations in OTB100

There are 98 video directories of OTB100 dataset in `data/otb100/data`, and the `img` folder under each video directory contains all images of the video.

There are only 1 json files in `data/otb100/annotations`:

`otb100.json`: Json file containing the annotations information of the OTB100 dataset.
10 changes: 9 additions & 1 deletion docs/useful_tools_scripts.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,15 @@ Example on UAV123 dataset:
```shell
./tools/analysis/sot/dist_sot_siamrpn_param_search.sh [${CONFIG_FILE}] [$GPUS] \
[--checkpoint ${CHECKPOINT}] [--log ${LOG_FILENAME}] [--eval ${EVAL}] \
[--penalty-k-range 0.05,0.5,0.05] [--lr-range 0.3,0.45,0.02] [--win-infu-range 0.46,0.55,0.02]
[--penalty-k-range 0.01,0.22,0.05] [--lr-range 0.4,0.61,0.05] [--win-infu-range 0.01,0.22,0.05]
```

Example on OTB100 dataset:

```shell
./tools/analysis/sot/dist_sot_siamrpn_param_search.sh [${CONFIG_FILE}] [$GPUS] \
[--checkpoint ${CHECKPOINT}] [--log ${LOG_FILENAME}] [--eval ${EVAL}] \
[--penalty-k-range 0.3,0.45,0.02] [--lr-range 0.35,0.5,0.02] [--win-infu-range 0.46,0.55,0.02]
```

## Log Analysis
Expand Down
42 changes: 40 additions & 2 deletions docs_zh-CN/dataset.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,21 @@
- [LaSOT](http://vision.cs.stonybrook.edu/~lasot/)
- [UAV123](https://cemse.kaust.edu.sa/ivul/uav123/)
- [TrackingNet](https://tracking-net.org/)
- [OTB100](http://www.visual-tracking.net/)

### 1. 下载数据集

请从官方网站下载数据集。建议将数据集的根目录符号链接到 `$MMTRACKING/data`。如果您的文件夹结构与以下不同,您可能需要更改配置文件中的相应路径。

对于 OTB100 数据集,你不必要手工地从官网下载数据。我们提供了下载脚本。

#### OTB100

```shell
# 通过网页爬虫下载 OTB100 数据集
python ./tools/convert_datasets/otb100/download_otb100.py -o ./data/otb100/zips -p 8
```

注意:

- `ILSVRC` 下的 `Lists` 包含来自在[这里](https://github.com/msracver/Flow-Guided-Feature-Aggregation/tree/master/data/ILSVRC2015/ImageSets)的 txt 文件。
Expand All @@ -23,7 +33,7 @@

- 对于多目标跟踪任务的训练和测试,只需要 MOT Challenge 中的任意一个数据集(比如 MOT17)。

- 对于单目标跟踪任务的训练和测试,需要 MSCOCO,ILSVRC, LaSOT, UAV123 和 TrackingNet 数据集。
- 对于单目标跟踪任务的训练和测试,需要 MSCOCO,ILSVRC, LaSOT, UAV123, TrackingNet 和 OTB100 数据集。

```
mmtracking
Expand Down Expand Up @@ -77,6 +87,11 @@ mmtracking
│ │ ├── TEST
│ │ │ ├── anno
│ │ │ ├── zips
│ │
│ ├── otb100
│ │ │── zips
│ │ │ │── Basketball.zip
│ │ │ │── Biker.zip
```

### 2. 转换标注格式
Expand Down Expand Up @@ -104,10 +119,16 @@ python ./tools/convert_datasets/mot/mot2reid.py -i ./data/MOT17/ -o ./data/MOT17
python ./tools/convert_datasets/uav123/uav2coco.py -i ./data/UAV123/ -o ./data/UAV123/annotations

# TrackingNet
# 解压目录 'TEST/zips' 下的所有 '*.zip' 文件
# 解压目录 'data/trackingnet/TEST/zips' 下的所有 '*.zip' 文件
bash ./tools/convert_datasets/trackingnet/unzip_trackingnet_test.sh ./data/trackingnet/TEST
JingweiZhang12 marked this conversation as resolved.
Show resolved Hide resolved
# 生成测试集标注
python ./tools/convert_datasets/trackingnet/trackingnet2coco.py -i ./data/trackingnet/TEST/ -o ./data/trackingnet/TEST/annotations

# OTB100
# 解压目录 'data/otb100/zips' 下的所有 '*.zip' 文件
bash ./tools/convert_datasets/otb100/unzip_otb100.sh ./data/otb100
# 生成标注
python ./tools/convert_datasets/otb100/otb2coco.py -i ./data/otb100/data -o ./data/otb100/annotations
```

完成以上格式转换后,文件目录结构如下:
Expand Down Expand Up @@ -175,6 +196,15 @@ mmtracking
│ │ │ ├── frames (the unzipped folders)
│ │ │ │ ├── 0-6LB4FqxoE_0
│ │ │ │ ├── 07Ysk1C0ZX0_0
│ │
│ ├── otb100
│ │ ├── zips
│ │ │ ├── Basketball.zip
│ │ │ ├── Biker.zip
│ │ ├── annotations
│ │ ├── data
│ │ │ ├── Basketball
│ │ │ │ ├── img
```

#### ILSVRC的标注文件夹
Expand Down Expand Up @@ -258,3 +288,11 @@ MOT17-02-FRCNN_000009/000081.jpg 3
在 `data/trackingnet/TEST/annotations` 中只有一个 json 文件:

`trackingnet_test.json`: 包含 TrackingNet 测试集标注信息的 json 文件。

#### TrackingNet的标注和视频帧文件夹

在 `data/otb100/data` 文件夹下有 OTB100 数据集的 98 个视频目录, 每个视频目录下的 `img` 文件夹包含该视频所有图片。

在 `data/otb100/data/annotations` 中只有一个 json 文件:

`otb100.json`: 包含 OTB100 数据集标注信息的 json 文件
10 changes: 9 additions & 1 deletion docs_zh-CN/useful_tools_scripts.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,15 @@
```shell
./tools/analysis/sot/dist_sot_siamrpn_param_search.sh [${CONFIG_FILE}] [$GPUS] \
[--checkpoint ${CHECKPOINT}] [--log ${LOG_FILENAME}] [--eval ${EVAL}] \
[--penalty-k-range 0.05,0.5,0.05] [--lr-range 0.3,0.45,0.02] [--win-infu-range 0.46,0.55,0.02]
[--penalty-k-range 0.01,0.22,0.05] [--lr-range 0.4,0.61,0.05] [--win-infu-range 0.01,0.22,0.05]
```

在 OTB100 上的超参搜索范例:

```shell
./tools/analysis/sot/dist_sot_siamrpn_param_search.sh [${CONFIG_FILE}] [$GPUS] \
[--checkpoint ${CHECKPOINT}] [--log ${LOG_FILENAME}] [--eval ${EVAL}] \
[--penalty-k-range 0.3,0.45,0.02] [--lr-range 0.35,0.5,0.02] [--win-infu-range 0.46,0.55,0.02]
```

## 日志分析
Expand Down
3 changes: 2 additions & 1 deletion mmtrack/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
from .imagenet_vid_dataset import ImagenetVIDDataset
from .lasot_dataset import LaSOTDataset
from .mot_challenge_dataset import MOTChallengeDataset
from .otb_dataset import OTB100Dataset
from .parsers import CocoVID
from .pipelines import PIPELINES
from .reid_dataset import ReIDDataset
Expand All @@ -18,5 +19,5 @@
'DATASETS', 'PIPELINES', 'build_dataloader', 'build_dataset', 'CocoVID',
'CocoVideoDataset', 'ImagenetVIDDataset', 'MOTChallengeDataset',
'ReIDDataset', 'SOTTrainDataset', 'SOTTestDataset', 'LaSOTDataset',
'UAV123Dataset', 'TrackingNetTestDataset'
'UAV123Dataset', 'TrackingNetTestDataset', 'OTB100Dataset'
]
11 changes: 11 additions & 0 deletions mmtrack/datasets/otb_dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
from mmtrack.datasets import DATASETS
from .sot_test_dataset import SOTTestDataset


@DATASETS.register_module()
class OTB100Dataset(SOTTestDataset):
"""OTB100 dataset for the testing of single object tracking.

The dataset doesn't support training mode.
"""
pass
8 changes: 4 additions & 4 deletions mmtrack/datasets/pipelines/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,15 +7,15 @@
SeqLoadAnnotations)
from .processing import MatchInstances
from .transforms import (SeqBlurAug, SeqColorAug, SeqCropLikeSiamFC,
SeqNormalize, SeqPad, SeqPhotoMetricDistortion,
SeqRandomCrop, SeqRandomFlip, SeqResize,
SeqShiftScaleAug)
SeqGrayAug, SeqNormalize, SeqPad,
SeqPhotoMetricDistortion, SeqRandomCrop,
SeqRandomFlip, SeqResize, SeqShiftScaleAug)

__all__ = [
'PIPELINES', 'LoadMultiImagesFromFile', 'SeqLoadAnnotations', 'SeqResize',
'SeqNormalize', 'SeqRandomFlip', 'SeqPad', 'SeqDefaultFormatBundle',
'VideoCollect', 'ConcatVideoReferences', 'LoadDetections',
'MatchInstances', 'SeqRandomCrop', 'SeqPhotoMetricDistortion',
'SeqCropLikeSiamFC', 'SeqShiftScaleAug', 'SeqBlurAug', 'SeqColorAug',
'ToList', 'ReIDFormatBundle'
'ToList', 'ReIDFormatBundle', 'SeqGrayAug'
]
Loading