-
Notifications
You must be signed in to change notification settings - Fork 598
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Feature] Support DanceTrack dataset for MOT #543
Changes from 5 commits
8b69aaf
f7777e1
71d0582
5058e88
a29e15b
5d21063
ae1c3c5
f4caf15
d17cc17
04e9b38
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
# dataset settings | ||
dataset_type = 'DanceTrackDataset' | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
train_pipeline = [ | ||
dict(type='LoadMultiImagesFromFile', to_float32=True), | ||
dict(type='SeqLoadAnnotations', with_bbox=True, with_track=True), | ||
dict( | ||
type='SeqResize', | ||
img_scale=(1088, 1088), | ||
share_params=True, | ||
ratio_range=(0.8, 1.2), | ||
keep_ratio=True, | ||
bbox_clip_border=False), | ||
dict(type='SeqPhotoMetricDistortion', share_params=True), | ||
dict( | ||
type='SeqRandomCrop', | ||
share_params=False, | ||
crop_size=(1088, 1088), | ||
bbox_clip_border=False), | ||
dict(type='SeqRandomFlip', share_params=True, flip_ratio=0.5), | ||
dict(type='SeqNormalize', **img_norm_cfg), | ||
dict(type='SeqPad', size_divisor=32), | ||
dict(type='MatchInstances', skip_nomatch=True), | ||
dict( | ||
type='VideoCollect', | ||
keys=[ | ||
'img', 'gt_bboxes', 'gt_labels', 'gt_match_indices', | ||
'gt_instance_ids' | ||
]), | ||
dict(type='SeqDefaultFormatBundle', ref_prefix='ref') | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='MultiScaleFlipAug', | ||
img_scale=(1088, 1088), | ||
flip=False, | ||
transforms=[ | ||
dict(type='Resize', keep_ratio=True), | ||
dict(type='RandomFlip'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size_divisor=32), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='VideoCollect', keys=['img']) | ||
]) | ||
] | ||
data_root = 'data/dancetrack/' | ||
data = dict( | ||
samples_per_gpu=2, | ||
workers_per_gpu=2, | ||
train=dict( | ||
type=dataset_type, | ||
visibility_thr=-1, | ||
ann_file=data_root + 'annotations/train_cocoformat.json', | ||
img_prefix=data_root + 'train', | ||
ref_img_sampler=dict( | ||
num_ref_imgs=1, | ||
frame_range=10, | ||
filter_key_img=True, | ||
method='uniform'), | ||
pipeline=train_pipeline), | ||
val=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'annotations/val_cocoformat.json', | ||
img_prefix=data_root + 'val', | ||
ref_img_sampler=None, | ||
pipeline=test_pipeline), | ||
test=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'annotations/val_cocoformat.json', | ||
img_prefix=data_root + 'val', | ||
ref_img_sampler=None, | ||
pipeline=test_pipeline)) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
_base_ = [ | ||
'../../_base_/models/faster_rcnn_r50_fpn.py', | ||
'../../_base_/datasets/dancetrack.py', '../../_base_/default_runtime.py' | ||
] | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done. |
||
model = dict( | ||
type='QDTrack', | ||
detector=dict( | ||
backbone=dict( | ||
norm_cfg=dict(requires_grad=False), | ||
style='caffe', | ||
init_cfg=dict( | ||
type='Pretrained', checkpoint='torchvision://resnet50')), | ||
rpn_head=dict(bbox_coder=dict(clip_border=False)), | ||
roi_head=dict( | ||
bbox_head=dict( | ||
loss_bbox=dict(type='L1Loss', loss_weight=1.0), | ||
bbox_coder=dict(clip_border=False), | ||
num_classes=1)), | ||
init_cfg=dict( | ||
type='Pretrained', | ||
checkpoint= # noqa: E251 | ||
'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco-person/faster_rcnn_r50_fpn_1x_coco-person_20201216_175929-d022e227.pth' # noqa: E501 | ||
)), | ||
track_head=dict( | ||
type='QuasiDenseTrackHead', | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. After using base config of ./qdtrack_faster-rcnn_r50_fpn_4e_crowdhuman_mot17-private-half.py, some duplicated keys can be removedd There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I realized that it was a fault to set
Given the rule that different base config files should have no key conflict, the dancetrack qdtrack config file should inherit no config file using
|
||
roi_extractor=dict( | ||
type='SingleRoIExtractor', | ||
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), | ||
out_channels=256, | ||
featmap_strides=[4, 8, 16, 32]), | ||
embed_head=dict( | ||
type='QuasiDenseEmbedHead', | ||
num_convs=4, | ||
num_fcs=1, | ||
embed_channels=256, | ||
norm_cfg=dict(type='GN', num_groups=32), | ||
loss_track=dict(type='MultiPosCrossEntropyLoss', loss_weight=0.25), | ||
loss_track_aux=dict( | ||
type='L2Loss', | ||
neg_pos_ub=3, | ||
pos_margin=0, | ||
neg_margin=0.1, | ||
hard_mining=True, | ||
loss_weight=1.0)), | ||
loss_bbox=dict(type='L1Loss', loss_weight=1.0), | ||
train_cfg=dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.7, | ||
neg_iou_thr=0.5, | ||
min_pos_iou=0.5, | ||
match_low_quality=False, | ||
ignore_iof_thr=-1), | ||
sampler=dict( | ||
type='CombinedSampler', | ||
num=256, | ||
pos_fraction=0.5, | ||
neg_pos_ub=3, | ||
add_gt_as_proposals=True, | ||
pos_sampler=dict(type='InstanceBalancedPosSampler'), | ||
neg_sampler=dict(type='RandomSampler')))), | ||
tracker=dict( | ||
type='QuasiDenseEmbedTracker', | ||
init_score_thr=0.9, | ||
obj_score_thr=0.5, | ||
match_score_thr=0.5, | ||
memo_tracklet_frames=30, | ||
memo_backdrop_frames=1, | ||
memo_momentum=0.8, | ||
nms_conf_thr=0.5, | ||
nms_backdrop_iou_thr=0.3, | ||
nms_class_iou_thr=0.7, | ||
with_cats=True, | ||
match_metric='bisoftmax')) | ||
img_norm_cfg = dict( | ||
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) | ||
train_pipeline = [ | ||
dict(type='LoadMultiImagesFromFile', to_float32=True), | ||
dict(type='SeqLoadAnnotations', with_bbox=True, with_track=True), | ||
dict( | ||
type='SeqResize', | ||
img_scale=(1088, 1088), | ||
share_params=True, | ||
ratio_range=(0.8, 1.2), | ||
keep_ratio=True, | ||
bbox_clip_border=False), | ||
dict(type='SeqPhotoMetricDistortion', share_params=True), | ||
dict( | ||
type='SeqRandomCrop', | ||
share_params=False, | ||
crop_size=(1088, 1088), | ||
bbox_clip_border=False), | ||
dict(type='SeqRandomFlip', share_params=True, flip_ratio=0.5), | ||
dict(type='SeqNormalize', **img_norm_cfg), | ||
dict(type='SeqPad', size_divisor=32), | ||
dict(type='MatchInstances', skip_nomatch=True), | ||
dict( | ||
type='VideoCollect', | ||
keys=[ | ||
'img', 'gt_bboxes', 'gt_labels', 'gt_match_indices', | ||
'gt_instance_ids' | ||
]), | ||
dict(type='SeqDefaultFormatBundle', ref_prefix='ref') | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='MultiScaleFlipAug', | ||
img_scale=(1088, 1088), | ||
flip=False, | ||
transforms=[ | ||
dict(type='Resize', keep_ratio=True), | ||
dict(type='RandomFlip'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size_divisor=32), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='VideoCollect', keys=['img']) | ||
]) | ||
] | ||
data = dict( | ||
train=dict(pipeline=train_pipeline), | ||
val=dict(pipeline=test_pipeline), | ||
test=dict(pipeline=test_pipeline)) | ||
# optimizer && learning policy | ||
optimizer_config = dict( | ||
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) | ||
lr_config = dict(policy='step', step=[3]) | ||
# runtime settings | ||
total_epochs = 4 | ||
evaluation = dict(metric=['bbox', 'track'], interval=1) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
inherit from https://github.com/open-mmlab/mmtracking/blob/master/configs/mot/qdtrack/qdtrack_faster-rcnn_r50_fpn_4e_mot17-private-half.py