Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

pbtxt -> pb in README DOIs #54

Merged
merged 1 commit into from
Feb 8, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,12 +7,12 @@
## DOIs covered by ORD

* Mdluli, V. et al. High-throughput Synthesis and Screening of Iridium(III) Photocatalysts for the Fast and Chemoselective Dehalogenation of Aryl Bromides. ACS Catalysis 10, 6977–6987 (2020). [doi: 10.1021/acscatal.0c02247](https://doi.org/10.1021/acscatal.0c02247)
* [ord_dataset-b440f8c90b6343189093770060fc4098](https://github.com/Open-Reaction-Database/ord-data/blob/main/data/b4/ord_dataset-b440f8c90b6343189093770060fc4098.pbtxt)
* [ord_dataset-b440f8c90b6343189093770060fc4098](https://github.com/Open-Reaction-Database/ord-data/blob/main/data/b4/ord_dataset-b440f8c90b6343189093770060fc4098.pb)
* Kutchukian, P. S. et al. Chemistry informer libraries: a chemoinformatics enabled approach to evaluate and advance synthetic methods. Chem. Sci. 7, 2604–2613 (2016). [doi: 10.1039/c5sc04751j](https://doi.org/10.1039/c5sc04751j)
* [ord_dataset-d319c2a22ecf4ce59db1a18ae71d529c](https://github.com/Open-Reaction-Database/ord-data/blob/main/data/d3/ord_dataset-d319c2a22ecf4ce59db1a18ae71d529c.pbtxt)
* [ord_dataset-d319c2a22ecf4ce59db1a18ae71d529c](https://github.com/Open-Reaction-Database/ord-data/blob/main/data/d3/ord_dataset-d319c2a22ecf4ce59db1a18ae71d529c.pb)
* Buitrago Santanilla, A. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2014). [doi: 10.1126/science.1259203](https://doi.org/10.1126/science.1259203)
* [ord_dataset-7d8f5fd922d4497d91cb81489b052746](https://github.com/Open-Reaction-Database/ord-data/blob/main/data/7d/ord_dataset-7d8f5fd922d4497d91cb81489b052746.pbtxt)
* [ord_dataset-7d8f5fd922d4497d91cb81489b052746](https://github.com/Open-Reaction-Database/ord-data/blob/main/data/7d/ord_dataset-7d8f5fd922d4497d91cb81489b052746.pb)
* Perera, D. et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science 359, 429–434 (2018). [doi: 10.1126/science.aap9112](https://doi.org/10.1126/science.aap9112)
* [ord_dataset-33320f511ffb4f89905448c7a5153111](https://github.com/Open-Reaction-Database/ord-data/blob/main/data/33/ord_dataset-33320f511ffb4f89905448c7a5153111.pbtxt)
* [ord_dataset-33320f511ffb4f89905448c7a5153111](https://github.com/Open-Reaction-Database/ord-data/blob/main/data/33/ord_dataset-33320f511ffb4f89905448c7a5153111.pb)
* Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018). [doi: 10.1126/science.aar5169](https://doi.org/10.1126/science.aar5169)
* [ord_dataset-46ff9a32d9e04016b9380b1b1ef949c3](https://github.com/Open-Reaction-Database/ord-data/blob/main/data/46/ord_dataset-46ff9a32d9e04016b9380b1b1ef949c3.pbtxt)
* [ord_dataset-46ff9a32d9e04016b9380b1b1ef949c3](https://github.com/Open-Reaction-Database/ord-data/blob/main/data/46/ord_dataset-46ff9a32d9e04016b9380b1b1ef949c3.pb)