Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Getting started documentation for otel-cpp sdk #942

Merged
merged 9 commits into from
Aug 10, 2021
Merged
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
208 changes: 206 additions & 2 deletions docs/public/sdk/GettingStarted.rst
Original file line number Diff line number Diff line change
@@ -1,4 +1,208 @@
Getting started
---------------
^^^^^^^^^^^^^^^

TBD
OpenTelemetry C++ SDK provides the reference implementation of OpenTelemetry C++ API,
and also provides implementation for Processor, Sampler, and core Exporters as per the
specification.


Exporter
^^^^^^^^

An exporter is responsible for sending the telemetry data to a particular backend.
OpenTelemetry offers six tracing exporters out of the box:

- In-Memory Exporter: keeps the data in memory, useful for debugging.
- Jaeger Exporter: prepares and sends the collected telemetry data to a Jaeger backend via UDP and HTTP.
- Zipkin Exporter: prepares and sends the collected telemetry data to a Zipkin backend via the Zipkin APIs.
- Logging Exporter: saves the telemetry data into log streams.
- OpenTelemetry(otlp) Exporter: sends the data to the OpenTelemetry Collector using protobuf/gRPC or protobuf/HTTP.
- ETW Exporter: sends the telemetry data to Event Tracing for Windows (ETW).

.. code:: cpp

// logging exporter
auto ostream_exporter =
std::unique_ptr<sdktrace::SpanExporter>(new opentelemetry::exporter::trace::OStreamSpanExporter);

// memory exporter
auto memory_exporter =
std::unique_ptr<sdktrace::SpanExporter>(new opentelemetry::exporter::memory::InMemorySpanExporter);

// zipkin exporter
opentelemetry::exporter::zipkin::ZipkinExporterOptions opts;
opts.endpoint = "http://localhost:9411/api/v2/spans" ; // or export OTEL_EXPORTER_ZIPKIN_ENDPOINT="..."
opts.service_name = "default_service" ;
auto zipkin_exporter =
std::unique_ptr<sdktrace::SpanExporter>(new opentelemetry::exporter::zipkin::ZipkinExporter(opts));

// Jaeger UDP exporter
opentelemetry::exporter::jaeger::JaegerExporterOptions opts;
opts.server_addr = "localhost";
opts.server_port = 6831;
auto jaeger_udp_exporter =
std::unique_ptr<sdktrace::SpanExporter>(new opentelemetry::exporter::jaeger::JaegerExporter(opts));
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add Jaeger HTTP example?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes missed that. Added now.


// otlp grpc exporter
opentelemetry::exporter::otlp::OtlpGrpcExporterOptions opts;
opts.endpoint = "localhost::4317";
opts.use_ssl_credentials = true;
opts.ssl_credentials_cacert_as_string = "ssl-certificate";
auto otlp_grpc_exporter =
std::unique_ptr<sdktrace::SpanExporter>(new opentelemetry::exporter::otlp::OtlpGrpcExporter(opts));

// otlp http exporter
opentelemetry::exporter::otlp::OtlpHttpExporterOptions opts;
opts.url = "http://localhost:4317/v1/traces";
auto otlp_http_exporter =
std::unique_ptr<sdktrace::SpanExporter>(new opentelemetry::exporter::otlp::OtlpHttpExporter(opts));


Span Processor
^^^^^^^^^^^^^^

Span Processor is initialised with an Exporter. Different Span Processors are offered by OpenTelemetry C++ SDK:

- SimpleSpanProcessor: immediately forwards ended spans to the exporter.
- BatchSpanProcessor: batches the ended spans and send them to exporter in bulk.
- MultiSpanProcessor: Allows multiple span processors to be active and configured at the same time.

.. code:: cpp

// simple processor
auto simple_processor = std::unique_ptr<sdktrace::SpanProcessor>(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

List the full definition of stdtrace in the beginning may help the users who follow these example code?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good point. Added it at the beginning.

new sdktrace::SimpleSpanProcessor(std::move(ostream_exporter)));

// batch processor
sdktrace::BatchSpanProcessorOptions options{};
auto batch_processor = std::unique_ptr<sdktrace::SpanProcessor>(
new sdktrace::BatchSpanProcessor(std::move(memory_exporter), options));

// multi-processor
std::vector<std::unique_ptr<SpanProcessor>>
processors{std::move(simple_processor), std::move(batch_processor)};
auto multi_processor = std::unique_ptr<sdktrace::SpanProcessor>(
new sdktrace::MultiSpanProcessor(std::move(processors));

Resource
^^^^^^^^

A Resource is an immutable representation of the entity producing telemetry as key-value pair.
The OpenTelemetry C++ SDK allow for creation of Resources and for associating them with telemetry.

.. code:: cpp

auto resource_attributes = opentelemetry::sdk::resource::ResourceAttributes
{
{"service.name": "shoppingcart"},
{"service.instance.id": "instance-12"}
};
auto resource = opentelemetry::sdk::resource::Resource::Create(resource_attributes);
auto received_attributes = resource.GetAttributes();
// received_attributes contains
// - service.name = shoppingcart
// - service.instance.id = instance-12
// - telemetry.sdk.name = opentelemetry
// - telemetry.sdk.language = cpp
// - telemetry.sdk.version = <current sdk version>

It is possible to define the custom resource detectors by inhering from
`opentelemetry::sdk::Resource::ResourceDetector` class.

Sampler
^^^^^^^

Sampling is mechanism to control/reducing the number of samples of traces collected and sent to the backend.
OpenTelemetry C++ SDK offers four samplers out of the box:

- AlwaysOnSampler which samples every trace regardless of upstream sampling decisions.
- AlwaysOffSampler which doesn’t sample any trace, regardless of upstream sampling decisions.
- ParentBased which uses the parent span to make sampling decisions, if present.
- TraceIdRatioBased which samples a configurable percentage of traces.

.. code:: cpp

//AlwaysOnSampler
opentelemetry::sdk::trace::AlwaysOnSampler always_on_sampler;

//AlwaysOffSampler
opentelemetry::sdk::trace::AlwaysOffSampler always_off_sampler;

//ParentBasedSampler
opentelemetry::sdk::trace::ParentBasedSampler sampler_off(std::make_shared<AlwaysOffSampler>());

//TraceIdRatioBasedSampler - Sample 50% generated spans
double ratio = 0.5;
opentelemetry::sdk::trace::TraceIdRatioBasedSampler s(ratio);


TracerContext
^^^^^^^^^^^^^

SDK configuration are shared between `TracerProvider` and all it's `Tracer` instances through `TracerContext`.

.. code:: cpp

auto tracer_context = std::make_shared<sdktrace::TracerContext>
(std::move(multi_processor), resource, std::move(always_on_sampler));

TracerProvider
^^^^^^^^^^^^^^

`TracerProvider` instance holds the SDK configurations ( Span Processors, Samplers, Resource). There is single
global TracerProvider instance for an application, and it is created at the start of application.
There are two different mechanisms to create TraceProvider instance

- Using constructor which takes already created TracerContext shared object as parameter.
- Using consructor which takes SDK configurations as parameter.

.. code:: cpp

// Created using `TracerContext` instance
auto tracer_provider = sdktrace::TracerProvider(tracer_context);

// Create using SDK configurations as parameter
auto tracer_provider =
sdktrace::TracerProvider(std::move(simple_processor), resource, std::move(always_on_sampler));

// set the global tracer TraceProvider
opentelemetry::trace::Provider::SetTracerProvider(provider);


Logging and Error Handling
^^^^^^^^^^^^^^^^^^^^^^^^^^

OpenTelemetry C++ SDK provides mechanism for application owner to add customer log and error handler.
The default log handler is redirected to standard output ( using std::cout ).

The logging macro supports logging using C++ stream format, and key-value pair.
The log handler is meant to capture errors and warnings arising from SDK, not supposed to be used for the application errors.
The different log levels are supported - Error, Warn, Info and Debug. The default log level is Warn ( to dump both Error and Warn)
and it can be changed at compile time.

.. code:: cpp

OTEL_INTERNAL_LOG_ERROR
(" Connection failed. Error string " << error_str << " Error Num: " << errorno);
OTEL_INTERNAL_LOG_ERROR
(" Connection failed." , {{"error message: " : error_str},{"error number": errorno}});
OTEL_INTERNAL_LOG_DEBUG
(" Connection Established Successfully. Headers:", {{"url", url},{"content-length", len}, {"content-type", type}});

The custom log handler can be defined by inheriting from `sdk::common::internal_log::LogHandler` class.

.. code:: cpp

class CustomLogHandler : public sdk::common::internal_log::LogHandler
{
void Handle(Loglevel level,
const char \*file,
int line,
const char \*msg,
const sdk::common::AttributeMap &attributes)

{
// add implementation here
}
};
sdk::common::internal_log::GlobalLogHandler::SetLogHandler(CustomLogHandler());