Skip to content

Beyond Hallucinations: Enhancing LVLMs through Hallucination-Aware Direct Preference Optimization

License

Notifications You must be signed in to change notification settings

opendatalab/HA-DPO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HA-DPO (Hallucination-aware Direct Preference Optimization)

Shanghai Artificial Intelligence Laboratory

[Paper] [Data(huggingface)] [Data(opendatalab)] [Models]

Introduction

We propose HA-DPO (Hallucination-aware Direct Preference Optimization), which eliminates LVLM hallucination using GPT-4 generated positive-negative data based on DPO (Direct Preference Optimization).

overview

This repo provides:

  • High-quality positive-negative hallucination-aware data

  • DPO framework for multiple LVLM (based on TRL)

    • MiniGPT-4
    • LLaVA-1.5
    • InstructBLIP
  • SHR Evaluation (Sentence-level Hallucination Ratio)

  • Human-free positive-negative data mining pipeline

Demo

Online demo will be available soon!

demo230130_upload.mp4

Getting Started

  1. create a new conda environment
conda create -n hadpo python==3.9
  1. install requirements
conda activate hadpo
pip install -e .

Data Preparation

For data preparation, please refer to data preparation.

Model Training and Evaluation

For model training and evaluation, please refer to docs in following:

MiniGPT-4 LLaVA-1.5 InstructBLIP
doc doc doc

SHR Evaluation

For SHR Evaluation, please refer to SHR Evaluation.

Main Results

MiniGPT-4-Llama2-7B

SHR results
Model HA-DPO SHR
MiniGPT-4-Llama2-7B ✖️ 47.3
MiniGPT-4-Llama2-7B ✔️ 44.4
POPE results

POPE Random

Model HA-DPO Accuracy Precision Recall F1 Score Yes Ratio (%)
MiniGPT-4-Llama2-7B ✖️ 51.13 50.57 99.80 67.13 98.66
MiniGPT-4-Llama2-7B ✔️ 86.13 92.81 78.33 84.96 42.20

POPE Popular

Model HA-DPO Accuracy Precision Recall F1 Score Yes Ratio (%)
MiniGPT-4-Llama2-7B ✖️ 51.46 50.74 99.53 67.72 98.06
MiniGPT-4-Llama2-7B ✔️ 79.50 80.20 78.33 79.25 48.83

POPE Adversarial

Model HA-DPO Accuracy Precision Recall F1 Score Yes Ratio (%)
MiniGPT-4-Llama2-7B ✖️ 51.26 50.64 99.66 67.16 98.40
MiniGPT-4-Llama2-7B ✔️ 75.66 74.36 78.33 76.29 52.66

InstructBLIP-13B

SHR results
Model HA-DPO SHR
InstructBLIP-13B ✖️ 51.2
InstructBLIP-13B ✔️ 49.1
POPE results

POPE Random

Model HA-DPO Accuracy Precision Recall F1 Score Yes Ratio (%)
InstructBLIP-13B ✖️ 88.70 85.03 93.93 89.26 55.23
InstructBLIP-13B ✔️ 89.83 93.07 86.06 89.43 46.23

POPE Popular

Model HA-DPO Accuracy Precision Recall F1 Score Yes Ratio (%)
InstructBLIP-13B ✖️ 81.36 75.06 93.93 83.44 62.56
InstructBLIP-13B ✔️ 85.76 85.55 86.06 85.80 50.03

POPE Adversarial

Model HA-DPO Accuracy Precision Recall F1 Score Yes Ratio (%)
InstructBLIP-13B ✖️ 74.50 67.64 93.93 78.64 69.43
InstructBLIP-13B ✔️ 80.70 77.72 86.06 81.68 55.36

LLaVA-1.5-7B

SHR results
Model HA-DPO SHR
LLaVA-1.5 ✖️ 36.7
LLaVA-1.5 ✔️ 34.0
POPE results

POPE Random

Model HA-DPO Accuracy Precision Recall F1 Score Yes Ratio (%)
LLaVA-1.5 ✖️ 89.60 88.77 90.66 89.70 51.06
LLaVA-1.5 ✔️ 90.53 92.99 87.66 90.25 47.13

POPE Popular

Model HA-DPO Accuracy Precision Recall F1 Score Yes Ratio (%)
LLaVA-1.5 ✖️ 86.20 83.23 90.66 86.79 54.46
LLaVA-1.5 ✔️ 87.90 88.07 87.66 87.81 49.76

POPE Adversarial

Model HA-DPO Accuracy Precision Recall F1 Score Yes Ratio (%)
LLaVA-1.5 ✖️ 79.76 74.43 90.66 81.75 60.90
LLaVA-1.5 ✔️ 81.46 77.99 87.66 82.54 56.20

Acknowledgement

  • MiniGPT-4. The MiniGPT-4 part of HA-DPO is based on the official MiniGPT-4 implementation.
  • VIGC. The InstructBLIP part of HA-DPO is built on VIGC, which is an amazing visual instruction generation and correction method.
  • LLaVA-1.5. The LLaVA-v1.5 part of HA-DPO is based on the official LLaVA-1.5 implementation, which is a great open-source work on LVLM.
  • TRL. Most model training and optimizing codes of HA-DPO are stemed from TRL, which is a great human-preference learning framework on LLM.

Paper and Citing HA-DPO

You can find more details in our paper.

If you're using HA-DPO in your research or applications, please cite using this BibTeX:

@misc{zhao2023hallucinations,
      title={Beyond Hallucinations: Enhancing LVLMs through Hallucination-Aware Direct Preference Optimization}, 
      author={Zhiyuan Zhao and Bin Wang and Linke Ouyang and Xiaoyi Dong and Jiaqi Wang and Conghui He},
      year={2023},
      eprint={2311.16839},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact us

If you have any questions, comments or suggestions, please do not hesitate to contact us at zhaozhiyuan@pjlab.org.cn and wangbin@pjlab.org.cn.

License

Apache License 2.0

About

Beyond Hallucinations: Enhancing LVLMs through Hallucination-Aware Direct Preference Optimization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published