-
Notifications
You must be signed in to change notification settings - Fork 122
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feature(xcy): add Metadrive Env and its SEZ configs (#192)
* feature(xcy): add meta drive env * polish(xcy):change config * feature(xcy):change metadrive version * polish(xcy):polish the config and comments --------- Co-authored-by: 蒲源 <48008469+puyuan1996@users.noreply.github.com>
- Loading branch information
1 parent
f062baa
commit 4c68ac8
Showing
7 changed files
with
723 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,4 @@ | ||
cython>=0.29 | ||
build>=0.7.0 | ||
auditwheel>=4 | ||
numpy>=1.22.4 | ||
numpy>=1.21.6 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,6 @@ | ||
DI-engine>=0.4.7 | ||
gymnasium[atari] | ||
moviepy | ||
numpy>=1.22.4 | ||
pympler | ||
minigrid | ||
|
103 changes: 103 additions & 0 deletions
103
zoo/metadrive/config/metadrive_sampled_efficientzero_config.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
from easydict import EasyDict | ||
|
||
# ============================================================== | ||
# begin of the most frequently changed config specified by the user | ||
# ============================================================== | ||
continuous_action_space = True | ||
K = 20 | ||
collector_env_num = 8 | ||
n_episode = 8 | ||
evaluator_env_num = 3 | ||
num_simulations = 50 | ||
update_per_collect = 200 | ||
batch_size = 64 | ||
max_env_step = int(1e6) | ||
reanalyze_ratio = 0. | ||
# ============================================================== | ||
# end of the most frequently changed config specified by the user | ||
# ============================================================== | ||
|
||
metadrive_sampled_efficientzero_config = dict( | ||
exp_name= | ||
f'data_sez_ctree/sez_metadrive_old{K}_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_seed0', | ||
env=dict( | ||
env_name='MetaDrive', | ||
continuous=True, | ||
obs_shape = [5, 84, 84], | ||
manually_discretization=False, | ||
collector_env_num=collector_env_num, | ||
evaluator_env_num=evaluator_env_num, | ||
n_evaluator_episode=evaluator_env_num, | ||
manager=dict(shared_memory=False, ), | ||
metadrive=dict( | ||
use_render=False, | ||
traffic_density=0.20, # Density of vehicles occupying the roads, range in [0,1] | ||
map='XSOS', # Int or string: an easy way to fill map_config | ||
horizon=4000, # Max step number | ||
driving_reward=1.0, # Reward to encourage agent to move forward. | ||
speed_reward=0.1, # Reward to encourage agent to drive at a high speed | ||
use_lateral_reward=False, # reward for lane keeping | ||
out_of_road_penalty=40.0, # Penalty to discourage driving out of road | ||
crash_vehicle_penalty=40.0, # Penalty to discourage collision | ||
decision_repeat=10, # Reciprocal of decision frequency | ||
out_of_route_done=True, # Game over if driving out of road | ||
), | ||
|
||
), | ||
policy=dict( | ||
model=dict( | ||
observation_shape=[5, 84, 84], | ||
action_space_size=2, | ||
continuous_action_space=continuous_action_space, | ||
num_of_sampled_actions=K, | ||
sigma_type='conditioned', | ||
model_type='conv', # options={'mlp', 'conv'} | ||
lstm_hidden_size=128, | ||
latent_state_dim=128, | ||
downsample = True, | ||
image_channel=5, | ||
), | ||
cuda=True, | ||
env_type='not_board_games', | ||
game_segment_length=50, | ||
update_per_collect=update_per_collect, | ||
batch_size=batch_size, | ||
optim_type='Adam', | ||
lr_piecewise_constant_decay=False, | ||
learning_rate=0.003, | ||
# NOTE: for continuous gaussian policy, we use the policy_entropy_loss as in the original Sampled MuZero paper. | ||
policy_entropy_loss_weight=5e-3, | ||
num_simulations=num_simulations, | ||
reanalyze_ratio=reanalyze_ratio, | ||
n_episode=n_episode, | ||
eval_freq=int(2000), | ||
replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions. | ||
collector_env_num=collector_env_num, | ||
evaluator_env_num=evaluator_env_num, | ||
), | ||
) | ||
metadrive_sampled_efficientzero_config = EasyDict(metadrive_sampled_efficientzero_config) | ||
main_config = metadrive_sampled_efficientzero_config | ||
|
||
metadrive_sampled_efficientzero_create_config = dict( | ||
env=dict( | ||
type='metadrive_lightzero', | ||
import_names=['zoo.metadrive.env.metadrive_env'], | ||
), | ||
env_manager=dict(type='subprocess'), | ||
policy=dict( | ||
type='sampled_efficientzero', | ||
import_names=['lzero.policy.sampled_efficientzero'], | ||
), | ||
collector=dict( | ||
type='episode_muzero', | ||
get_train_sample=True, | ||
import_names=['lzero.worker.muzero_collector'], | ||
) | ||
) | ||
metadrive_sampled_efficientzero_create_config = EasyDict(metadrive_sampled_efficientzero_create_config) | ||
create_config = metadrive_sampled_efficientzero_create_config | ||
if __name__ == "__main__": | ||
|
||
from lzero.entry import train_muzero | ||
train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step) |
Oops, something went wrong.