Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Yolov5 training #401

Merged
merged 2 commits into from
Jan 26, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -4,4 +4,7 @@ This folder contains minimal code usage examples that showcase the basic inferen
provided by OpenDR. Specifically the following examples are provided:
1. inference_demo.py: Perform inference on a single image. Setting `--device cpu` performs inference on CPU.
2. webcam_demo.py: A simple tool that performs live object detection using a webcam.
3. inference_tutorial.ipynb: Perform inference using pretrained or custom models.
3. inference_tutorial.ipynb: Perform inference using pretrained or custom models.
4. convert_detection_dataset.py: An example of how to convert a `DetectionDataset` into the required format
to train a custom model. Training instructions can be found on the original
[YOLOv5 repository](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data#3-train)
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
# Copyright 2020-2023 OpenDR European Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This example shows one way to convert a DetectionDataset, namely the AGIHumans dataset, to YOLOv5 format,
to be used for training a custom model using the original YOLOv5 implementation: https://github.com/ultralytics/yolov5
The opendr_datasets package can be installed using: `pip install git+https://github.com/opendr-eu/datasets.git`
"""

import argparse
import os
import yaml
import cv2
from opendr_datasets import AGIHumans


def main(args):
path = args.original_data_path
train_set = AGIHumans(path, train=True)
val_set = AGIHumans(path, train=False)

new_path = args.new_data_path
os.makedirs(new_path, exist_ok=True)

# step 1: write dataset .yml file
# the new data structure is as follows:
# new_path
# ├── train
# │ ├── images
# │ │ ├── im00001.jpg
# │ │ └── ...
# │ └── labels
# │ ├── im00001.txt
# │ └── ...
# ├── test
# │ ├── images
# │ │ ├── im00001.jpg
# │ │ └── ...
# │ └── labels
# │ ├── im00001.txt
# │ └── ...
# └── AGIHumans.yml

d = {
'path': new_path,
'train': 'train',
'val': 'test',
'names': {c: c_name for c, c_name in enumerate(train_set.class_names)}
}

with open('AGIHumans.yaml', 'w') as yaml_file:
yaml.dump(d, yaml_file, default_flow_style=False)

# step 2: convert annotations to .txt files
# train set
os.makedirs(os.path.join(new_path, 'train', 'images'), exist_ok=True)
os.makedirs(os.path.join(new_path, 'train', 'labels'), exist_ok=True)
for idx, (img, boxes) in enumerate(train_set):
# save img to 'train/images/im{:05d}.jpg'
im_cv = img.opencv()
cv2.imwrite(os.path.join(new_path, 'train', 'images', f'im{idx:05d}.jpg'), im_cv)
im_height, im_width, im_c = im_cv.shape
# save normalized label to 'train/labels/im{:05d}.txt
lines = ''
for box in boxes:
x_center = (box.left + box.width * 0.5) / im_width
y_center = (box.top + box.height * 0.5) / im_height
width = box.width / im_width
height = box.height / im_height
lines += f'{box.name} {x_center} {y_center} {width} {height}\n'
if len(lines) > 0:
with open(os.path.join(new_path, 'train', 'labels', f'im{idx:05d}.txt'), 'w') as f:
f.write(lines)

# validation/test set
os.makedirs(os.path.join(new_path, 'test', 'images'), exist_ok=True)
os.makedirs(os.path.join(new_path, 'test', 'labels'), exist_ok=True)
for idx, (img, boxes) in enumerate(val_set):
# save img to 'train/images/im{:05d}.jpg'
im_cv = img.opencv()
cv2.imwrite(os.path.join(new_path, 'test', 'images', f'im{idx:05d}.jpg'), im_cv)
im_height, im_width, im_c = im_cv.shape
# save normalized label to 'train/labels/im{:05d}.txt
lines = ''
for box in boxes:
x_center = (box.left + box.width * 0.5) / im_width
y_center = (box.top + box.height * 0.5) / im_height
width = box.width / im_width
height = box.height / im_height
lines += f'{box.name} {x_center} {y_center} {width} {height}\n'
if len(lines) > 0:
with open(os.path.join(new_path, 'test', 'labels', f'im{idx:05d}.txt'), 'w') as f:
f.write(lines)


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--original-data-path", help="Dataset root", type=str)
parser.add_argument("--new-data-path", help="Path to converted dataset location", type=str)

args = parser.parse_args()
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ def __init__(self, model_name, path=None, device='cuda', temp_path='.', force_re
force_reload=force_reload)
else:
self.model = torch.hub.load('ultralytics/yolov5:master', 'custom', path=path,
force_reload=force_reload, skip_validation=True)
force_reload=force_reload)
torch.hub.set_dir(default_dir)

self.model.to(device)
Expand Down