Skip to content

Commit

Permalink
Merge pull request #5362 from openjournals/joss.06424
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored May 20, 2024
2 parents b86b6c7 + afecff6 commit 07c86ef
Show file tree
Hide file tree
Showing 3 changed files with 727 additions and 0 deletions.
241 changes: 241 additions & 0 deletions joss.06424/10.21105.joss.06424.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240520T205043-75c2090e43f94eec4b0640f83c00912b8a1effb3</doi_batch_id>
<timestamp>20240520205043</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>admin@theoj.org</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>05</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>97</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Kirstine.jl: A Julia Package for Bayesian Optimal
Design of Experiments</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Ludger</given_name>
<surname>Sandig</surname>
<ORCID>https://orcid.org/0000-0002-3174-3275</ORCID>
</person_name>
</contributors>
<publication_date>
<month>05</month>
<day>20</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6424</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06424</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.11185430</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6424</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06424</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06424</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06424.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="bezanson-2017-julia">
<article_title>Julia: A fresh approach to numerical
computing</article_title>
<author>Bezanson</author>
<journal_title>SIAM review</journal_title>
<issue>1</issue>
<volume>59</volume>
<doi>10.1137/141000671</doi>
<cYear>2017</cYear>
<unstructured_citation>Bezanson, J., Edelman, A., Karpinski,
S., &amp; Shah, V. B. (2017). Julia: A fresh approach to numerical
computing. SIAM Review, 59(1), 65–98.
https://doi.org/10.1137/141000671</unstructured_citation>
</citation>
<citation key="bornkamp-2023-dosef">
<volume_title>DoseFinding: Planning and analyzing dose
finding experiments</volume_title>
<author>Bornkamp</author>
<cYear>2023</cYear>
<unstructured_citation>Bornkamp, B., Pinheiro, J., Bretz,
F., &amp; Sandig, L. (2023). DoseFinding: Planning and analyzing dose
finding experiments.
https://CRAN.R-project.org/package=DoseFinding</unstructured_citation>
</citation>
<citation key="chaloner-1995-bayes-exper-desig">
<article_title>Bayesian experimental design: A
review</article_title>
<author>Chaloner</author>
<journal_title>Statistical Science</journal_title>
<issue>3</issue>
<volume>10</volume>
<doi>10.1214/ss/1177009939</doi>
<cYear>1995</cYear>
<unstructured_citation>Chaloner, K., &amp; Verdinelli, I.
(1995). Bayesian experimental design: A review. Statistical Science,
10(3), 273–304.
https://doi.org/10.1214/ss/1177009939</unstructured_citation>
</citation>
<citation key="fedorov-2013-optim-desig">
<volume_title>Optimal design for nonlinear response
models</volume_title>
<author>Fedorov</author>
<doi>10.1201/b15054</doi>
<cYear>2013</cYear>
<unstructured_citation>Fedorov, V. V., &amp; Leonov, S. L.
(2013). Optimal design for nonlinear response models. CRC Press.
https://doi.org/10.1201/b15054</unstructured_citation>
</citation>
<citation key="foracchia-2004-poped">
<article_title>POPED, a software for optimal experiment
design in population kinetics</article_title>
<author>Foracchia</author>
<journal_title>Computer Methods and Programs in
Biomedicine</journal_title>
<volume>74</volume>
<doi>10.1016/s0169-2607(03)00073-7</doi>
<cYear>2004</cYear>
<unstructured_citation>Foracchia, M., Hooker, A. C., Vicini,
P., &amp; Ruggeri, A. (2004). POPED, a software for optimal experiment
design in population kinetics. Computer Methods and Programs in
Biomedicine, 74.
https://doi.org/10.1016/s0169-2607(03)00073-7</unstructured_citation>
</citation>
<citation key="masoudi-2020-icaod">
<volume_title>ICAOD: Optimal designs for nonlinear
statistical models by imperialist competitive algorithm
(ICA)</volume_title>
<author>Masoudi</author>
<cYear>2020</cYear>
<unstructured_citation>Masoudi, E., Holling, H., &amp; Wong,
W. K. (2020). ICAOD: Optimal designs for nonlinear statistical models by
imperialist competitive algorithm (ICA).
https://CRAN.R-project.org/package=ICAOD</unstructured_citation>
</citation>
<citation key="nyberg-2012-poped">
<article_title>PopED: An extended, parallelized, nonlinear
mixed effects models optimal design tool</article_title>
<author>Nyberg</author>
<journal_title>Computer Methods and Programs in
Biomedicine</journal_title>
<volume>108</volume>
<doi>10.1016/j.cmpb.2012.05.005</doi>
<cYear>2012</cYear>
<unstructured_citation>Nyberg, J., Ueckert, S., Stroemberg,
E. A., Hennig, S., Karlsson, M. O., &amp; Hooker, A. C. (2012). PopED:
An extended, parallelized, nonlinear mixed effects models optimal design
tool. Computer Methods and Programs in Biomedicine, 108.
https://doi.org/10.1016/j.cmpb.2012.05.005</unstructured_citation>
</citation>
<citation key="overstall-2020-acebayes">
<article_title>acebayes: An R package for Bayesian optimal
design of experiments via approximate coordinate
exchange</article_title>
<author>Overstall</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>13</issue>
<volume>95</volume>
<doi>10.18637/jss.v095.i13</doi>
<cYear>2020</cYear>
<unstructured_citation>Overstall, A. M., Woods, D. C., &amp;
Adamou, M. (2020). acebayes: An R package for Bayesian optimal design of
experiments via approximate coordinate exchange. Journal of Statistical
Software, 95(13), 1–33.
https://doi.org/10.18637/jss.v095.i13</unstructured_citation>
</citation>
<citation key="ryan-2015-review-modern">
<article_title>A review of modern computational algorithms
for Bayesian optimal design</article_title>
<author>Ryan</author>
<journal_title>International Statistical
Review</journal_title>
<issue>1</issue>
<volume>84</volume>
<doi>10.1111/insr.12107</doi>
<cYear>2015</cYear>
<unstructured_citation>Ryan, E. G., Drovandi, C. C., McGree,
J. M., &amp; Pettitt, A. N. (2015). A review of modern computational
algorithms for Bayesian optimal design. International Statistical
Review, 84(1), 128–154.
https://doi.org/10.1111/insr.12107</unstructured_citation>
</citation>
<citation key="yang-2013-optim-desig">
<article_title>On optimal designs for nonlinear models: A
general and efficient algorithm</article_title>
<author>Yang</author>
<journal_title>Journal of the American Statistical
Association</journal_title>
<issue>504</issue>
<volume>108</volume>
<doi>10.1080/01621459.2013.806268</doi>
<cYear>2013</cYear>
<unstructured_citation>Yang, M., Biedermann, S., &amp; Tang,
E. (2013). On optimal designs for nonlinear models: A general and
efficient algorithm. Journal of the American Statistical Association,
108(504), 1411–1420.
https://doi.org/10.1080/01621459.2013.806268</unstructured_citation>
</citation>
<citation key="kennedy-1995-partic">
<article_title>Particle swarm optimization</article_title>
<author>Kennedy</author>
<journal_title>Proceedings of ICNN’95 - international
conference on neural networks</journal_title>
<volume>4</volume>
<doi>10.1109/icnn.1995.488968</doi>
<cYear>1995</cYear>
<unstructured_citation>Kennedy, J., &amp; Eberhart, R.
(1995). Particle swarm optimization. Proceedings of ICNN’95 -
International Conference on Neural Networks, 4, 1942–1948.
https://doi.org/10.1109/icnn.1995.488968</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06424/10.21105.joss.06424.pdf
Binary file not shown.
Loading

0 comments on commit 07c86ef

Please sign in to comment.