Skip to content

Commit

Permalink
Merge pull request #6137 from openjournals/joss.07312
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Nov 14, 2024
2 parents 0f5cc4d + 9438cd0 commit c17222f
Show file tree
Hide file tree
Showing 3 changed files with 732 additions and 0 deletions.
267 changes: 267 additions & 0 deletions joss.07312/10.21105.joss.07312.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,267 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241114125034-43b698c7452c5fe8677d136f111651ac7fb84b50</doi_batch_id>
<timestamp>20241114125034</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>admin@theoj.org</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>11</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>103</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>PANINIpy: Package of Algorithms for Nonparametric
Inference with Networks In Python</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Alec</given_name>
<surname>Kirkley</surname>
<affiliations>
<institution><institution_name>Institute of Data Science, University of Hong Kong, Hong Kong</institution_name></institution>
<institution><institution_name>Department of Urban Planning and Design, University of Hong Kong, Hong Kong</institution_name></institution>
<institution><institution_name>Urban Systems Institute, University of Hong Kong, Hong Kong</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0001-9966-0807</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Baiyue</given_name>
<surname>He</surname>
<affiliations>
<institution><institution_name>Institute of Data Science, University of Hong Kong, Hong Kong</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0007-9787-9726</ORCID>
</person_name>
</contributors>
<publication_date>
<month>11</month>
<day>14</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>7312</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07312</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14100356</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7312</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07312</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07312</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07312.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Kirkley2024HypergraphBinning">
<article_title>Inference of dynamic hypergraph
representations in temporal interaction data</article_title>
<author>Kirkley</author>
<journal_title>Physical Review E</journal_title>
<volume>109</volume>
<doi>10.1103/physreve.109.054306</doi>
<cYear>2024</cYear>
<unstructured_citation>Kirkley, A. (2024). Inference of
dynamic hypergraph representations in temporal interaction data.
Physical Review E, 109, 054306.
https://doi.org/10.1103/physreve.109.054306</unstructured_citation>
</citation>
<citation key="Kirkley2023PopulationClustering">
<article_title>Compressing network populations with modal
networks reveals structural diversity</article_title>
<author>Kirkley</author>
<journal_title>Communications Physics</journal_title>
<volume>6</volume>
<doi>10.1038/s42005-023-01270-5</doi>
<cYear>2023</cYear>
<unstructured_citation>Kirkley, A., Rojas, A., Rosvall, M.,
&amp; Young, J.-G. (2023). Compressing network populations with modal
networks reveals structural diversity. Communications Physics, 6, 148.
https://doi.org/10.1038/s42005-023-01270-5</unstructured_citation>
</citation>
<citation key="Kirkley2022DistributionalRegionalization">
<article_title>Spatial regionalization based on optimal
information compression</article_title>
<author>Kirkley</author>
<journal_title>Communications Physics</journal_title>
<volume>5</volume>
<doi>10.1038/s42005-022-01029-4</doi>
<cYear>2022</cYear>
<unstructured_citation>Kirkley, A. (2022). Spatial
regionalization based on optimal information compression. Communications
Physics, 5, 249.
https://doi.org/10.1038/s42005-022-01029-4</unstructured_citation>
</citation>
<citation key="Kirkley2024HubIdentification">
<article_title>Identifying hubs in directed
networks</article_title>
<author>Kirkley</author>
<journal_title>Physical Review E</journal_title>
<volume>109</volume>
<doi>10.1103/physreve.109.034310</doi>
<cYear>2024</cYear>
<unstructured_citation>Kirkley, A. (2024). Identifying hubs
in directed networks. Physical Review E, 109, 034310.
https://doi.org/10.1103/physreve.109.034310</unstructured_citation>
</citation>
<citation key="MorelBalbiKirkley2024CommunityRegionalization">
<article_title>Bayesian regionalization of urban mobility
networks</article_title>
<author>Morel-Balbi</author>
<journal_title>Physical Review Research</journal_title>
<volume>6</volume>
<doi>10.1103/physrevresearch.6.033307</doi>
<cYear>2024</cYear>
<unstructured_citation>Morel-Balbi, S., &amp; Kirkley, A.
(2024). Bayesian regionalization of urban mobility networks. Physical
Review Research, 6, 033307.
https://doi.org/10.1103/physrevresearch.6.033307</unstructured_citation>
</citation>
<citation key="kirkley2024fastnonparametricinferencenetwork">
<article_title>Fast nonparametric inference of network
backbones for graph sparsification</article_title>
<author>Kirkley</author>
<journal_title>arXiv:2409.06417</journal_title>
<doi>10.48550/arXiv.2409.06417</doi>
<cYear>2024</cYear>
<unstructured_citation>Kirkley, A. (2024). Fast
nonparametric inference of network backbones for graph sparsification.
arXiv:2409.06417.
https://doi.org/10.48550/arXiv.2409.06417</unstructured_citation>
</citation>
<citation key="barabasi2016networks">
<volume_title>Network science</volume_title>
<author>Barabási</author>
<cYear>2016</cYear>
<unstructured_citation>Barabási, A.-L. (2016). Network
science. Cambridge University Press.</unstructured_citation>
</citation>
<citation key="newman2018networks">
<volume_title>Networks</volume_title>
<author>Newman</author>
<doi>10.1093/oso/9780198805090.001.0001</doi>
<cYear>2018</cYear>
<unstructured_citation>Newman, M. (2018). Networks. Oxford
University Press.
https://doi.org/10.1093/oso/9780198805090.001.0001</unstructured_citation>
</citation>
<citation key="fortunato2010community">
<article_title>Community detection in graphs</article_title>
<author>Fortunato</author>
<journal_title>Physics Reports</journal_title>
<issue>3-5</issue>
<volume>486</volume>
<doi>10.1016/j.physrep.2009.11.002</doi>
<cYear>2010</cYear>
<unstructured_citation>Fortunato, S. (2010). Community
detection in graphs. Physics Reports, 486(3-5), 75–174.
https://doi.org/10.1016/j.physrep.2009.11.002</unstructured_citation>
</citation>
<citation key="peel2022statistical">
<article_title>Statistical inference links data and theory
in network science</article_title>
<author>Peel</author>
<journal_title>Nature Communications</journal_title>
<issue>1</issue>
<volume>13</volume>
<doi>10.1038/s41467-022-34267-9</doi>
<cYear>2022</cYear>
<unstructured_citation>Peel, L., Peixoto, T. P., &amp; De
Domenico, M. (2022). Statistical inference links data and theory in
network science. Nature Communications, 13(1), 6794.
https://doi.org/10.1038/s41467-022-34267-9</unstructured_citation>
</citation>
<citation key="young2022clustering">
<article_title>Clustering of heterogeneous populations of
networks</article_title>
<author>Young</author>
<journal_title>Physical Review E</journal_title>
<issue>1</issue>
<volume>105</volume>
<doi>10.1103/physreve.105.014312</doi>
<cYear>2022</cYear>
<unstructured_citation>Young, J.-G., Kirkley, A., &amp;
Newman, M. E. (2022). Clustering of heterogeneous populations of
networks. Physical Review E, 105(1), 014312.
https://doi.org/10.1103/physreve.105.014312</unstructured_citation>
</citation>
<citation key="battiston2021physics">
<article_title>The physics of higher-order interactions in
complex systems</article_title>
<author>Battiston</author>
<journal_title>Nature Physics</journal_title>
<issue>10</issue>
<volume>17</volume>
<doi>10.1038/s41567-021-01371-4</doi>
<cYear>2021</cYear>
<unstructured_citation>Battiston, F., Amico, E., Barrat, A.,
Bianconi, G., Ferraz de Arruda, G., Franceschiello, B., Iacopini, I.,
Kéfi, S., Latora, V., Moreno, Y., &amp; others. (2021). The physics of
higher-order interactions in complex systems. Nature Physics, 17(10),
1093–1098.
https://doi.org/10.1038/s41567-021-01371-4</unstructured_citation>
</citation>
<citation key="fajardo2022node">
<article_title>Node metadata can produce predictability
crossovers in network inference problems</article_title>
<author>Fajardo-Fontiveros</author>
<journal_title>Physical Review X</journal_title>
<issue>1</issue>
<volume>12</volume>
<doi>10.1103/physrevx.12.011010</doi>
<cYear>2022</cYear>
<unstructured_citation>Fajardo-Fontiveros, O., Guimerà, R.,
&amp; Sales-Pardo, M. (2022). Node metadata can produce predictability
crossovers in network inference problems. Physical Review X, 12(1),
011010.
https://doi.org/10.1103/physrevx.12.011010</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07312/10.21105.joss.07312.pdf
Binary file not shown.
Loading

0 comments on commit c17222f

Please sign in to comment.