Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.03781 #2756

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
175 changes: 175 additions & 0 deletions joss.03781/10.21105.joss.03781.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/4.4.0" xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" xmlns:rel="http://www.crossref.org/relations.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="4.4.0" xsi:schemaLocation="http://www.crossref.org/schema/4.4.0 http://www.crossref.org/schemas/crossref4.4.0.xsd">
<head>
<doi_batch_id>819ef599d0446c3a2731f1ec1ee95f4e</doi_batch_id>
<timestamp>20211117185838</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>admin@theoj.org</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>11</month>
<year>2021</year>
</publication_date>
<journal_volume>
<volume>6</volume>
</journal_volume>
<issue>67</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>spectrapepper: A Python toolbox for advanced analysis of spectroscopic data for materials and devices.</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Enric</given_name>
<surname>Grau-Luque</surname>
<ORCID>http://orcid.org/0000-0002-8357-5824</ORCID>
</person_name>
<person_name sequence="additional" contributor_role="author">
<given_name>Fabien</given_name>
<surname>Atlan</surname>
<ORCID>http://orcid.org/0000-0001-7233-4892</ORCID>
</person_name>
<person_name sequence="additional" contributor_role="author">
<given_name>Ignacio</given_name>
<surname>Becerril-Romero</surname>
<ORCID>http://orcid.org/0000-0002-7087-6097</ORCID>
</person_name>
<person_name sequence="additional" contributor_role="author">
<given_name>Alejandro</given_name>
<surname>Perez-Rodriguez</surname>
<ORCID>http://orcid.org/0000-0002-3634-1355</ORCID>
</person_name>
<person_name sequence="additional" contributor_role="author">
<given_name>Maxim</given_name>
<surname>Guc</surname>
<ORCID>http://orcid.org/0000-0002-2072-9566</ORCID>
</person_name>
<person_name sequence="additional" contributor_role="author">
<given_name>Victor</given_name>
<surname>Izquierdo-Roca</surname>
<ORCID>http://orcid.org/0000-0002-5502-3133</ORCID>
</person_name>
</contributors>
<publication_date>
<month>11</month>
<day>17</day>
<year>2021</year>
</publication_date>
<pages>
<first_page>3781</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.03781</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">“https://doi.org/10.5281/zenodo.5708435”</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/3781</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.03781</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.03781</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.03781.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="ref1">
<unstructured_citation>Executive Summary Materials are an essential element of advanced energy technologies. Accelerating the discovery of new materials, and the associated research required for maturing these technologies into deployment, will require a multidisciplinary and international effort that brings together a wide variety of individuals working effectively across their specialties, as well as across sector and political boundaries. It will also require a radical departure from traditional forms of discovery., Aspuru-Guzik, Alán and Persson, Kristin, :C:/Users/etgrau/AppData/Local/Mendeley Ltd./Mendeley Desktop/Downloaded/Aspuru-Guzik, Alán - Unknown - Materials Acceleration Platform Accelerating Advanced Energy Materials Discovery by Integrating High-Thro.pdf:pdf, Report of the Clean Energy Materials Innovation Challenge Expert Workshop, 3D render,Central America,Earth,Mexico,Nature,USA,astronomy,cities,city lights,continent,globe,illustration,map,night,north america,orbit,orbiting,planet,realistic,region,satellite,satellite view,science,space,stars,sun,sunrise,weather, SuperPaper, January, 1–108, Materials Acceleration Platform - Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods with Artificial Intelligence, http://nrs.harvard.edu/urn-3:HUL.InstRepos:35164974, 2018</unstructured_citation>
</citation>
<citation key="ref2">
<doi>10.1016/j.solmat.2015.12.036</doi>
</citation>
<citation key="ref3">
<doi>10.1038/s41598-017-01381-4</doi>
</citation>
<citation key="ref4">
<doi>10.1039/c9ta03625c</doi>
</citation>
<citation key="ref5">
<doi>10.1063/1.5061809</doi>
</citation>
<citation key="ref6">
<doi>10.1002/PIP.541</doi>
</citation>
<citation key="ref7">
<doi>10.1039/d1ta01299a</doi>
</citation>
<citation key="ref8">
<doi>10.1002/aenm.201903242</doi>
</citation>
<citation key="ref9">
<doi>10.1016/j.respol.2005.12.006</doi>
</citation>
<citation key="ref10">
<doi>10.1002/9781119148739.ch4</doi>
</citation>
<citation key="ref11">
<doi>10.1016/j.joule.2018.05.009</doi>
</citation>
<citation key="ref12">
<doi>10.1039/d0ee02838j</doi>
</citation>
<citation key="ref13">
<doi>10.1039/c9ta02356a</doi>
</citation>
<citation key="ref14">
<doi>10.1038/s41586-018-0337-2</doi>
</citation>
<citation key="ref15">
<unstructured_citation>Scotts Valley, CA, Van Rossum, Guido and Drake, Fred L., 1441412697, CZGSe Megasample, CreateSpace, Python 3 Reference Manual, 2009</unstructured_citation>
</citation>
<citation key="ref16">
<doi>10.1038/s41586-020-2649-2</doi>
</citation>
<citation key="ref17">
<doi>10.5281/ZENODO.4681666</doi>
</citation>
<citation key="ref18">
<doi>10.1038/s41592-019-0686-2</doi>
</citation>
<citation key="ref19">
<doi>10.1109/MCSE.2007.55</doi>
</citation>
<citation key="ref20">
<unstructured_citation>Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net., Pedregosa, Fabian and Varoquaux, Gaël and Gramfort, Alexandre and Michel, Vincent and Thirion, Bertrand and Grisel, Olivier and Blondel, Mathieu and Prettenhofer, Peter and Weiss, Ron and Dubourg, Vincent and Vanderplas, Jake and Passos, Alexandre and Cournapeau, David and Brucher, Matthieu and Perrot, Matthieu and Duchesnay, Édouard, Journal of Machine Learning Research, :C:/Users/etgrau/AppData/Local/Mendeley Ltd./Mendeley Desktop/Downloaded/Pedregosa FABIANPEDREGOSA et al. - 2011 - Scikit-learn Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Ale(2).pdf:pdf, Python,model selection,supervised learning,unsupervised learning, SuperPaper, 2825–2830, Scikit-learn: Machine Learning in Python, http://scikit-learn.sourceforge.net., 12, 2011</unstructured_citation>
</citation>
<citation key="ref21">
<doi>10.1177/0003702819839098</doi>
</citation>
<citation key="ref22">
<doi>10.1016/j.chemolab.2018.06.009</doi>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.03781/10.21105.joss.03781.pdf
Binary file not shown.