Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.04691 #3592

Merged
merged 4 commits into from
Oct 9, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
329 changes: 329 additions & 0 deletions joss.04691/10.21105.joss.04691.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,329 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20221009T080619-161200c060bee2e587ee0cf89638fa3922b9b500</doi_batch_id>
<timestamp>20221009080619</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>admin@theoj.org</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org/</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2022</year>
</publication_date>
<journal_volume>
<volume>7</volume>
</journal_volume>
<issue>78</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Volume Segmantics: A Python Package for Semantic
Segmentation of Volumetric Data Using Pre-trained PyTorch Deep Learning
Models</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Oliver N. F.</given_name>
<surname>King</surname>
<ORCID>https://orcid.org/0000-0002-6152-7207</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Dimitrios</given_name>
<surname>Bellos</surname>
<ORCID>https://orcid.org/0000-0002-8015-3191</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Mark</given_name>
<surname>Basham</surname>
<ORCID>https://orcid.org/0000-0002-8438-1415</ORCID>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>09</day>
<year>2022</year>
</publication_date>
<pages>
<first_page>4691</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.04691</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.7143363</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/4691</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.04691</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.04691</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.04691.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="russakovsky_imagenet_2015">
<article_title>ImageNet Large Scale Visual Recognition
Challenge</article_title>
<author>Russakovsky</author>
<journal_title>International Journal of Computer
Vision</journal_title>
<issue>3</issue>
<volume>115</volume>
<doi>10.1007/s11263-015-0816-y</doi>
<issn>1573-1405</issn>
<cYear>2015</cYear>
<unstructured_citation>Russakovsky, O., Deng, J., Su, H.,
Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., &amp; Fei-Fei, L. (2015). ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer
Vision, 115(3), 211–252.
https://doi.org/10.1007/s11263-015-0816-y</unstructured_citation>
</citation>
<citation key="perslev_one_2019">
<article_title>One Network to Segment Them All: A General,
Lightweight System for Accurate 3D Medical Image
Segmentation</article_title>
<author>Perslev</author>
<journal_title>Medical Image Computing and Computer Assisted
Intervention – MICCAI 2019</journal_title>
<doi>10.1007/978-3-030-32245-8_4</doi>
<isbn>978-3-030-32245-8</isbn>
<cYear>2019</cYear>
<unstructured_citation>Perslev, M., Dam, E. B., Pai, A.,
&amp; Igel, C. (2019). One Network to Segment Them All: A General,
Lightweight System for Accurate 3D Medical Image Segmentation. In D.
Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert, S. Zhou, P.-T. Yap,
&amp; A. Khan (Eds.), Medical Image Computing and Computer Assisted
Intervention – MICCAI 2019 (pp. 30–38). Springer International
Publishing.
https://doi.org/10.1007/978-3-030-32245-8_4</unstructured_citation>
</citation>
<citation key="buslaev_albumentations_2020">
<article_title>Albumentations: Fast and Flexible Image
Augmentations</article_title>
<author>Buslaev</author>
<journal_title>Information</journal_title>
<issue>2</issue>
<volume>11</volume>
<doi>10.3390/info11020125</doi>
<issn>2078-2489</issn>
<cYear>2020</cYear>
<unstructured_citation>Buslaev, A., Iglovikov, V. I.,
Khvedchenya, E., Parinov, A., Druzhinin, M., &amp; Kalinin, A. A.
(2020). Albumentations: Fast and Flexible Image Augmentations.
Information, 11(2).
https://doi.org/10.3390/info11020125</unstructured_citation>
</citation>
<citation key="alvarez-borges_u-net_2022">
<article_title>U-Net Segmentation Methods for
Variable-Contrast XCT Images of Methane-Bearing Sand Using Small
Training Datasets</article_title>
<author>Alvarez-Borges</author>
<doi>10.1002/essoar.10506807.2</doi>
<cYear>2022</cYear>
<unstructured_citation>Alvarez-Borges, F. J., King, O. N.
F., Madhusudhan, B. N., Connolley, T., Basham, M., &amp; Ahmed, S. I.
(2022). U-Net Segmentation Methods for Variable-Contrast XCT Images of
Methane-Bearing Sand Using Small Training Datasets. Earth; Space Science
Open Archive.
https://doi.org/10.1002/essoar.10506807.2</unstructured_citation>
</citation>
<citation key="tun_massively_2021">
<article_title>A massively multi-scale approach to
characterizing tissue architecture by synchrotron micro-CT applied to
the human placenta</article_title>
<author>Tun</author>
<journal_title>Journal of The Royal Society
Interface</journal_title>
<issue>179</issue>
<volume>18</volume>
<doi>10.1098/rsif.2021.0140</doi>
<cYear>2021</cYear>
<unstructured_citation>Tun, W. M., Poologasundarampillai,
G., Bischof, H., Nye, G., King, O. N. F., Basham, M., Tokudome, Y.,
Lewis, R. M., Johnstone, E. D., Brownbill, P., Darrow, M., &amp;
Chernyavsky, I. L. (2021). A massively multi-scale approach to
characterizing tissue architecture by synchrotron micro-CT applied to
the human placenta. Journal of The Royal Society Interface, 18(179),
20210140. https://doi.org/10.1098/rsif.2021.0140</unstructured_citation>
</citation>
<citation key="Yakubovskiy:2019">
<article_title>Segmentation models pytorch</article_title>
<author>Yakubovskiy</author>
<journal_title>GitHub repository</journal_title>
<cYear>2020</cYear>
<unstructured_citation>Yakubovskiy, P. (2020). Segmentation
models pytorch. In GitHub repository. GitHub.
https://github.com/qubvel/segmentation_models.pytorch</unstructured_citation>
</citation>
<citation key="pennington_survos_2022">
<article_title>SuRVoS 2: Accelerating Annotation and
Segmentation for Large Volumetric Bioimage Workflows Across Modalities
and Scales</article_title>
<author>Pennington</author>
<journal_title>Frontiers in Cell and Developmental
Biology</journal_title>
<volume>10</volume>
<doi>10.3389/fcell.2022.842342</doi>
<issn>2296-634X</issn>
<cYear>2022</cYear>
<unstructured_citation>Pennington, A., King, O. N. F., Tun,
W. M., Ho, E. M. L., Luengo, I., Darrow, M. C., &amp; Basham, M. (2022).
SuRVoS 2: Accelerating Annotation and Segmentation for Large Volumetric
Bioimage Workflows Across Modalities and Scales. Frontiers in Cell and
Developmental Biology, 10.
https://doi.org/10.3389/fcell.2022.842342</unstructured_citation>
</citation>
<citation key="survos2:2018">
<article_title>SuRVoS2</article_title>
<author>Pennington</author>
<journal_title>GitHub repository</journal_title>
<cYear>2018</cYear>
<unstructured_citation>Pennington, A., King, O. N. F.,
Luengo, I., &amp; Basham, M. (2018). SuRVoS2. In GitHub repository.
GitHub.
https://github.com/DiamondLightSource/SuRVoS2</unstructured_citation>
</citation>
<citation key="perslev_github_2019">
<article_title>Multi-planar U-net</article_title>
<author>Perslev</author>
<journal_title>GitHub repository</journal_title>
<cYear>2019</cYear>
<unstructured_citation>Perslev, M., &amp; Igel, C. (2019).
Multi-planar U-net. In GitHub repository. GitHub.
https://github.com/perslev/MultiPlanarUNet</unstructured_citation>
</citation>
<citation key="tekawade_github_2020">
<article_title>CTSegNet</article_title>
<author>Tekawade</author>
<journal_title>GitHub repository</journal_title>
<cYear>2020</cYear>
<unstructured_citation>Tekawade, A., &amp; Igel, C. (2020).
CTSegNet. In GitHub repository. GitHub.
https://github.com/aniketkt/CTSegNet</unstructured_citation>
</citation>
<citation key="wolny_github_2019">
<article_title>Pytorch-3dunet</article_title>
<author>Wolny</author>
<journal_title>GitHub repository</journal_title>
<cYear>2019</cYear>
<unstructured_citation>Wolny, A. (2019). Pytorch-3dunet. In
GitHub repository. GitHub.
https://github.com/wolny/pytorch-3dunet</unstructured_citation>
</citation>
<citation key="lee_deepem_2018">
<article_title>DeepEM</article_title>
<author>Lee</author>
<journal_title>GitHub repository</journal_title>
<cYear>2018</cYear>
<unstructured_citation>Lee, K., &amp; Turner, N. L. (2018).
DeepEM. In GitHub repository. GitHub.
https://github.com/seung-lab/DeepEM</unstructured_citation>
</citation>
<citation key="lin2021pytorch">
<article_title>PyTorch connectomics: A scalable and flexible
segmentation framework for EM connectomics</article_title>
<author>Lin</author>
<journal_title>arXiv preprint
arXiv:2112.05754</journal_title>
<doi>10.48550/arXiv.2112.05754</doi>
<cYear>2021</cYear>
<unstructured_citation>Lin, Z., Wei, D., Lichtman, J., &amp;
Pfister, H. (2021). PyTorch connectomics: A scalable and flexible
segmentation framework for EM connectomics. arXiv Preprint
arXiv:2112.05754.
https://doi.org/10.48550/arXiv.2112.05754</unstructured_citation>
</citation>
<citation key="urakubo_uni-em_2019">
<article_title>UNI-EM: An Environment for Deep Neural
Network-Based Automated Segmentation of Neuronal Electron Microscopic
Images</article_title>
<author>Urakubo</author>
<journal_title>Scientific Reports</journal_title>
<issue>1</issue>
<volume>9</volume>
<doi>10.1038/s41598-019-55431-0</doi>
<issn>2045-2322</issn>
<cYear>2019</cYear>
<unstructured_citation>Urakubo, H., Bullmann, T., Kubota,
Y., Oba, S., &amp; Ishii, S. (2019). UNI-EM: An Environment for Deep
Neural Network-Based Automated Segmentation of Neuronal Electron
Microscopic Images. Scientific Reports, 9(1), 19413.
https://doi.org/10.1038/s41598-019-55431-0</unstructured_citation>
</citation>
<citation key="lin_pth_connec_github_2019">
<article_title>PyTorch connectomics</article_title>
<author>Lin</author>
<journal_title>GitHub repository</journal_title>
<cYear>2019</cYear>
<unstructured_citation>Lin, Z., Lu, Y., Belhamissi, M.,
Banerjee, A., Lauenburg, L., Swaroop, K. K., Wei, D., &amp; Pfister, H.
(2019). PyTorch connectomics. In GitHub repository. GitHub.
https://github.com/zudi-lin/pytorch_connectomics</unstructured_citation>
</citation>
<citation key="wu_neutorch_2021">
<article_title>Neutorch</article_title>
<author>Wu</author>
<journal_title>GitHub repository</journal_title>
<cYear>2021</cYear>
<unstructured_citation>Wu, J. (2021). Neutorch. In GitHub
repository. GitHub.
https://github.com/flatironinstitute/neutorch</unstructured_citation>
</citation>
<citation key="NEURIPS2019_9015">
<article_title>PyTorch: An imperative style,
high-performance deep learning library</article_title>
<author>Paszke</author>
<journal_title>Advances in neural information processing
systems 32</journal_title>
<cYear>2019</cYear>
<unstructured_citation>Paszke, A., Gross, S., Massa, F.,
Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S.
(2019). PyTorch: An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E.
Fox, &amp; R. Garnett (Eds.), Advances in neural information processing
systems 32 (pp. 8024–8035). Curran Associates, Inc.
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading