-
-
Notifications
You must be signed in to change notification settings - Fork 135
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Fix/merge back v2 #474
Merged
Merged
Fix/merge back v2 #474
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
* Add the version tag to the image name if present * Fix casing for MLNet framework definition
* Add volume meta data to aws meta info
* Add constraints for v2 benchmark For ease of reproducibility, we want to include our experimental setup in the constraints file. For our experiments we increase the volume size to 100gb and require gp3 volumes (general purpose SSD).
* let the job runner handle the rescheduling logic to ensure that the job is always can't be acted upon by current worker after being rescheduled * remove commented code
Made the previous version abstract to avoid accidentally running the wrong version of GAMA for the benchmark.
* Unsparsify target variables for (Tuned)RF Sparse targets are not supported in scikit-learn 0.24.2, and are used with tasks 360932 and 360933 (QSAR) in the benchmark. * cosmetic change to make de/serialization easier to debug Co-authored-by: Sebastien Poirier <sebastien@h2o.ai>
Since it's entirely possible that the processes were already terminating, but only completed termination between the process.children call and the proc.terminate/kill calls.
* Iteratively build the forest to honor constraints In particular depending on the dataset size either memory or time constraints can become a problem which makes it unreliable as a baseline. Gradually growing the forest sidesteps both issues. * Make iterative fit default, parameterize execution * Step_size as script parameter, safer check if done When final_forest_size is not an exact multiple of step_size, randomforest should still terminate. Additionally step_size is escaped with an underscore as it is not a RandomForestEstimator hyperparameter.
…ts (#441) * Iterative fit to meet memory and time constraints Specifically for each value of `max_features` to try, an equal time budget is alloted, with one additional budget being reserved for the final fit. This does mean that different `max_features` can lead to different number of trees, but it keeps it simple. * Abort tuning when close to total time budget The first fit of each iterative fit for a `max_features` value was not guarded, which can lead to exceeding the total time budget. This adds a check before the first fit to estimate whether the budget will be exceeded, and if so aborting further tuning and continue with the final fit. * Make k_folds configurable * Add scikit-learn code with explanation * Modify cross_validate, allow 1 estimator per split This is useful when we maintain a warm_started model for each individual split. * Use custom cv function to allow warm-start By default estimators are cloned in any scikit-learn cross_validate function (which stops warm-start) and it is not possible to specify a specific estimator-object per fold (which stops warm-start). The added custom_validate module makes changes to the scikit-learn code to allow warm-starting to work in conjunction with the cross-validate functionality. For more info see scikit-learn#22044 and scikit-learn#22087. * Add parameter to set tune time, rest is for fit The previous iteration where the final fit was treated as an equivalent budget to any other optimization sometimes left too little time to train the final forest, in particular when the last fit took longer than expected. This would often lead to very small forests for the final model. The new system guarantees roughly 10% of budget for the final forest, guaranteeing a better final fit.
In a previous iteration it was encoded as a numpy file, but now it's serialized to JSON which means that results.probabilities is simply a string if imputation is required.
Technically monkeypatch xmltodict function used by openml when reading the features xml
Was supposed to be included with #443
…er (#468) * change workflow to correctly modify the app version on releases and when forcing merged version back to master * protect main branch from accidental releases
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
previous attempt was squash-merged, apparently deleting the common node between stable-v2 and master